A maximum principle for optimally controlled systems of conservation laws
Alberto Bressan; Andrea Marson
Rendiconti del Seminario Matematico della Università di Padova (1995)
- Volume: 94, page 79-94
- ISSN: 0041-8994
Access Full Article
topHow to cite
topReferences
top- [1] A. Bressan, Lecture notes on systems of conservation laws, S.I.S.S.A., Trieste (1993).
- [2] A. Bressan - A. Marson, A variational calculus for shock solutions to systems of conservation laws, to appear in Comm. P.D.E. Zbl0846.35080
- [3] R. Di Perna, Entropy and the uniqueness of solutions to hyperbolic conservation laws, in Nonlinear Evolution Equations, M. Crandall Ed., Academic Press, New York (1978), pp. 1-16. Zbl0469.35064MR513809
- [4] R. Di Perna, Uniqueness of solutions to hyperbolic conservation laws, Indiana Univ. Math. J., 28 (1979), pp. 244-257. Zbl0409.35057MR523630
- [5] Li Ta-Tsien - Yu Wen-Ci, Boundary value problems for quasilinear hyperbolic systems, Duke University Mathemathics Series V (1985). Zbl0627.35001MR823237
- [6] B. Rozdestvenskii - N. Yanenko, Systems of Quasi-Linear Equations, A. M. S. Translations of Mathematical Monographs, Vol. 55 (1983). Zbl0513.35002MR694243
- [7] M. Schatzman, Introduction a l'analyse des systemes hyperboliques de lois de conservation non-lineaires, Equipe d'Analyse NumeriqueLyonSaint-Etienne, 37 (1985).
- [8] J. Smoller, Shock Waves and Reaction-DiffusionEquations, Springer-Verlag, New York (1983). Zbl0807.35002MR688146