A maximum principle for optimally controlled systems of conservation laws

Alberto Bressan; Andrea Marson

Rendiconti del Seminario Matematico della Università di Padova (1995)

  • Volume: 94, page 79-94
  • ISSN: 0041-8994

How to cite

top

Bressan, Alberto, and Marson, Andrea. "A maximum principle for optimally controlled systems of conservation laws." Rendiconti del Seminario Matematico della Università di Padova 94 (1995): 79-94. <http://eudml.org/doc/108381>.

@article{Bressan1995,
author = {Bressan, Alberto, Marson, Andrea},
journal = {Rendiconti del Seminario Matematico della Università di Padova},
keywords = {maximum principle; conservation laws; strictly hyperbolic systems; cost function; optimal control},
language = {eng},
pages = {79-94},
publisher = {Seminario Matematico of the University of Padua},
title = {A maximum principle for optimally controlled systems of conservation laws},
url = {http://eudml.org/doc/108381},
volume = {94},
year = {1995},
}

TY - JOUR
AU - Bressan, Alberto
AU - Marson, Andrea
TI - A maximum principle for optimally controlled systems of conservation laws
JO - Rendiconti del Seminario Matematico della Università di Padova
PY - 1995
PB - Seminario Matematico of the University of Padua
VL - 94
SP - 79
EP - 94
LA - eng
KW - maximum principle; conservation laws; strictly hyperbolic systems; cost function; optimal control
UR - http://eudml.org/doc/108381
ER -

References

top
  1. [1] A. Bressan, Lecture notes on systems of conservation laws, S.I.S.S.A., Trieste (1993). 
  2. [2] A. Bressan - A. Marson, A variational calculus for shock solutions to systems of conservation laws, to appear in Comm. P.D.E. Zbl0846.35080
  3. [3] R. Di Perna, Entropy and the uniqueness of solutions to hyperbolic conservation laws, in Nonlinear Evolution Equations, M. Crandall Ed., Academic Press, New York (1978), pp. 1-16. Zbl0469.35064MR513809
  4. [4] R. Di Perna, Uniqueness of solutions to hyperbolic conservation laws, Indiana Univ. Math. J., 28 (1979), pp. 244-257. Zbl0409.35057MR523630
  5. [5] Li Ta-Tsien - Yu Wen-Ci, Boundary value problems for quasilinear hyperbolic systems, Duke University Mathemathics Series V (1985). Zbl0627.35001MR823237
  6. [6] B. Rozdestvenskii - N. Yanenko, Systems of Quasi-Linear Equations, A. M. S. Translations of Mathematical Monographs, Vol. 55 (1983). Zbl0513.35002MR694243
  7. [7] M. Schatzman, Introduction a l'analyse des systemes hyperboliques de lois de conservation non-lineaires, Equipe d'Analyse NumeriqueLyonSaint-Etienne, 37 (1985). 
  8. [8] J. Smoller, Shock Waves and Reaction-DiffusionEquations, Springer-Verlag, New York (1983). Zbl0807.35002MR688146

NotesEmbed ?

top

You must be logged in to post comments.