Hyperbolic equations and SBV functions

Camillo De Lellis[1]

  • [1] Institut für Mathematik, Universität Zürich, Winterthurerstrasse 190, CH-8057 Zürich, Switzerland

Journées Équations aux dérivées partielles (2010)

  • page 1-10
  • ISSN: 0752-0360

Abstract

top
In this article we survey some recent results in the regularity theory of admissible solutions to hyperbolic conservation laws and Hamilton-Jacobi equations.

How to cite

top

De Lellis, Camillo. "Hyperbolic equations and SBV functions." Journées Équations aux dérivées partielles (2010): 1-10. <http://eudml.org/doc/116387>.

@article{DeLellis2010,
abstract = {In this article we survey some recent results in the regularity theory of admissible solutions to hyperbolic conservation laws and Hamilton-Jacobi equations.},
affiliation = {Institut für Mathematik, Universität Zürich, Winterthurerstrasse 190, CH-8057 Zürich, Switzerland},
author = {De Lellis, Camillo},
journal = {Journées Équations aux dérivées partielles},
language = {eng},
month = {6},
pages = {1-10},
publisher = {Groupement de recherche 2434 du CNRS},
title = {Hyperbolic equations and SBV functions},
url = {http://eudml.org/doc/116387},
year = {2010},
}

TY - JOUR
AU - De Lellis, Camillo
TI - Hyperbolic equations and SBV functions
JO - Journées Équations aux dérivées partielles
DA - 2010/6//
PB - Groupement de recherche 2434 du CNRS
SP - 1
EP - 10
AB - In this article we survey some recent results in the regularity theory of admissible solutions to hyperbolic conservation laws and Hamilton-Jacobi equations.
LA - eng
UR - http://eudml.org/doc/116387
ER -

References

top
  1. Alberti, G., and Ambrosio, L. A geometrical approach to monotone functions in R n . Math. Z. 230, 2 (1999), 259–316. Zbl0934.49025MR1676726
  2. Ambrosio, L., and De Lellis, C. A note on admissible solutions of 1D scalar conservation laws and 2D Hamilton-Jacobi equations. J. Hyperbolic Differ. Equ. 1, 4 (2004), 813–826. Zbl1071.35032MR2111584
  3. Ambrosio, L., De Lellis, C., and Malý, J. On the chain rule for the divergence of BV-like vector fields: applications, partial results, open problems. In Perspectives in nonlinear partial differential equations, vol. 446 of Contemp. Math. Amer. Math. Soc., Providence, RI, 2007, pp. 31–67. Zbl1200.49043MR2373724
  4. Ambrosio, L., Fusco, N., and Pallara, D.Functions of bounded variation and free discontinuity problems. Oxford Mathematical Monographs. The Clarendon Press Oxford University Press, New York, 2000. Zbl0957.49001MR1857292
  5. Ancona, F., and Coclite, G. M. On the attainable set for Temple class systems with boundary controls. SIAM J. Control Optim. 43, 6 (2005), 2166–2190 (electronic). Zbl1087.93010MR2179483
  6. Ancona, F., and Marson, A. On the attainable set for scalar nonlinear conservation laws with boundary control. SIAM J. Control Optim. 36, 1 (1998), 290–312 (electronic). Zbl0919.35082MR1616586
  7. Ancona, F., and Marson, A. Asymptotic stabilization of systems of conservation laws by controls acting at a single boundary point. In Control methods in PDE-dynamical systems, vol. 426 of Contemp. Math. Amer. Math. Soc., Providence, RI, 2007, pp. 1–43. Zbl1128.35069MR2311519
  8. Ancona, F., and Nguyen, K. T. SBV regularity for solutions to genuinely nonlinear Temple systems of balance laws. In preparation. 
  9. Bianchini, S., and Caravenna, L. SBV regularity for genuinely nonlinear, strictly hyperbolic systems of conservation laws. In preparation. Zbl1261.35089
  10. Bianchini, S., De Lellis, C., and Robyr, R. SBV regularity for Hamilton-Jacobi equations in R n . To appear in Arch. Rat. Mech. Anal. (2010). Zbl1223.49039
  11. Bressan, A.Hyperbolic systems of conservation laws, vol. 20 of Oxford Lecture Series in Mathematics and its Applications. Oxford University Press, Oxford, 2000. The one-dimensional Cauchy problem. Zbl0997.35002MR1816648
  12. Bressan, A., and Marson, A. A maximum principle for optimally controlled systems of conservation laws. Rend. Sem. Mat. Univ. Padova 94 (1995), 79–94. Zbl0935.49012
  13. Bressan, A., and Shen, W. Optimality conditions for solutions to hyperbolic balance laws. In Control methods in PDE-dynamical systems, vol. 426 of Contemp. Math. Amer. Math. Soc., Providence, RI, 2007, pp. 129–152. Zbl05194890MR2311524
  14. Cannarsa, P., and Sinestrari, C.Semiconcave functions, Hamilton-Jacobi equations, and optimal control. Progress in Nonlinear Differential Equations and their Applications, 58. Birkhäuser Boston Inc., Boston, MA, 2004. Zbl1095.49003MR2041617
  15. Dafermos, C. M.Hyperbolic conservation laws in continuum physics, vol. 325 of Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences]. Springer-Verlag, Berlin, 2000. Zbl0940.35002MR1763936
  16. Dafermos, C. M. Wave fans are special. Acta Math. Appl. Sin. Engl. Ser. 24, 3 (2008), 369–374. Zbl1170.35478MR2433867
  17. De Giorgi, E., and Ambrosio, L. New functionals in the calculus of variations. Atti Accad. Naz. Lincei Rend. Cl. Sci. Fis. Mat. Natur. (8) 82, 2 (1988), 199–210 (1989). Zbl0715.49014MR1152641
  18. Evans, L. C.Partial differential equations, vol. 19 of Graduate Studies in Mathematics. American Mathematical Society, Providence, RI, 1998. Zbl0902.35002MR1625845
  19. Robyr, R. SBV regularity of entropy solutions for a class of genuinely nonlinear scalar balance laws with non-convex flux function. J. Hyperbolic Differ. Equ. 5, 2 (2008), 449–475. Zbl1152.35074MR2420006
  20. Tonon, D.Personal communication.. 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.