A universal property of the Cayley-Chow space of algebraic cycles
Rendiconti del Seminario Matematico della Università di Padova (1996)
- Volume: 95, page 127-142
- ISSN: 0041-8994
Access Full Article
topHow to cite
topGuerra, Lucio. "A universal property of the Cayley-Chow space of algebraic cycles." Rendiconti del Seminario Matematico della Università di Padova 95 (1996): 127-142. <http://eudml.org/doc/108386>.
@article{Guerra1996,
author = {Guerra, Lucio},
journal = {Rendiconti del Seminario Matematico della Università di Padova},
keywords = {Chow variety; embedding; regular cycles; functor of schemes},
language = {eng},
pages = {127-142},
publisher = {Seminario Matematico of the University of Padua},
title = {A universal property of the Cayley-Chow space of algebraic cycles},
url = {http://eudml.org/doc/108386},
volume = {95},
year = {1996},
}
TY - JOUR
AU - Guerra, Lucio
TI - A universal property of the Cayley-Chow space of algebraic cycles
JO - Rendiconti del Seminario Matematico della Università di Padova
PY - 1996
PB - Seminario Matematico of the University of Padua
VL - 95
SP - 127
EP - 142
LA - eng
KW - Chow variety; embedding; regular cycles; functor of schemes
UR - http://eudml.org/doc/108386
ER -
References
top- [1] A. Andreotti - F. NORGUET, La convexité holomorphe dans l'espace analytique des cycles d'une variété algébrique, Ann. Scuola Norm. Sup. Pisa, 21 (1967) pp. 31-82. Zbl0176.04001MR239118
- [2] D. Barlet, Espace analytique reduit des cycles analytiques complexes compacts d'un espace analytique complexe de dimension finie, in Fonctions de plusieurs variables complexes II (Sem. F. Norguet), Springer L.N.M., 482 (1970), pp. 1-158. Zbl0331.32008MR399503
- [3] F. Catanese, Chow varieties, Hilbert schemes, and moduli spaces of surfaces of general type, J. Alg. Geom., 1 (1992), pp. 561-595. Zbl0807.14006MR1174902
- [4] A. Cayley, On a new analytical representation of curves in space I, II, Quart. J. Math., 3 (1860), pp. 225-236; 5 (1862), pp. 81-86.
- [5] W.L. Chow - B.L. Van Der Waerden, Zur algebraischen Geometrie, IX: Über zugeordnete Formen und algebraische Systeme von algebraischen Mannigfaltigkeiten, Math. Ann., 113 (1937), pp. 692-704. Zbl0016.04004MR1513117JFM62.0772.02
- [6] E.M. Friedlander, Algebraic cycles, Chow varieties, and Lawson homology, Comp. Math., 77 (1991), pp. 55-93. Zbl0754.14011MR1091892
- [7] E.M. Friedlander - H.B. Lawson, A theory of algebraic cocycles, Ann. Math., 136 (1992), pp. 361-428. Zbl0788.14014MR1185123
- [8] W. Fulton, Intersection Theory, Springer (1984). Zbl0541.14005MR732620
- [9] L. Guerra, Degrees of Cayley-Chow varieties, Math. Nachr., 171 (1995), pp. 165-176. Zbl0838.14003MR1316357
- [10] W.V. Hodge - D. Pedoe, Methods of Algebraic Geometry, vol. II, Cambridge U.P. (1968). Zbl0157.27501
- [11] D. Mumford, Algebraic Geometry I, Complex Projective Varieties, Springer (1976). Zbl0821.14001MR453732
- [12] D. Mumford - J. FOGARTY, Geometric Invariant Theory, Springer (1982). Zbl0504.14008MR719371
- [13] M. Nagata, On the normality of the Chow variety of positive 0-cycles of degree m in an algebraic variety, Memoirs Coll. Sci. Kyoto (A), 29 (1955), pp. 165-176. Zbl0066.14701MR96668
- [14] P. Samuel, Lectures on unique factorization domains, Tata Inst. Fund. Research, Bombay (1964). Zbl0184.06601MR214579
- [15] H. Weyl, The Classical Groups, their Invariants and Representations, Princeton U.P. (1946). Zbl1024.20502MR1488158
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.