A universal property of the Cayley-Chow space of algebraic cycles

Lucio Guerra

Rendiconti del Seminario Matematico della Università di Padova (1996)

  • Volume: 95, page 127-142
  • ISSN: 0041-8994

How to cite

top

Guerra, Lucio. "A universal property of the Cayley-Chow space of algebraic cycles." Rendiconti del Seminario Matematico della Università di Padova 95 (1996): 127-142. <http://eudml.org/doc/108386>.

@article{Guerra1996,
author = {Guerra, Lucio},
journal = {Rendiconti del Seminario Matematico della Università di Padova},
keywords = {Chow variety; embedding; regular cycles; functor of schemes},
language = {eng},
pages = {127-142},
publisher = {Seminario Matematico of the University of Padua},
title = {A universal property of the Cayley-Chow space of algebraic cycles},
url = {http://eudml.org/doc/108386},
volume = {95},
year = {1996},
}

TY - JOUR
AU - Guerra, Lucio
TI - A universal property of the Cayley-Chow space of algebraic cycles
JO - Rendiconti del Seminario Matematico della Università di Padova
PY - 1996
PB - Seminario Matematico of the University of Padua
VL - 95
SP - 127
EP - 142
LA - eng
KW - Chow variety; embedding; regular cycles; functor of schemes
UR - http://eudml.org/doc/108386
ER -

References

top
  1. [1] A. Andreotti - F. NORGUET, La convexité holomorphe dans l'espace analytique des cycles d'une variété algébrique, Ann. Scuola Norm. Sup. Pisa, 21 (1967) pp. 31-82. Zbl0176.04001MR239118
  2. [2] D. Barlet, Espace analytique reduit des cycles analytiques complexes compacts d'un espace analytique complexe de dimension finie, in Fonctions de plusieurs variables complexes II (Sem. F. Norguet), Springer L.N.M., 482 (1970), pp. 1-158. Zbl0331.32008MR399503
  3. [3] F. Catanese, Chow varieties, Hilbert schemes, and moduli spaces of surfaces of general type, J. Alg. Geom., 1 (1992), pp. 561-595. Zbl0807.14006MR1174902
  4. [4] A. Cayley, On a new analytical representation of curves in space I, II, Quart. J. Math., 3 (1860), pp. 225-236; 5 (1862), pp. 81-86. 
  5. [5] W.L. Chow - B.L. Van Der Waerden, Zur algebraischen Geometrie, IX: Über zugeordnete Formen und algebraische Systeme von algebraischen Mannigfaltigkeiten, Math. Ann., 113 (1937), pp. 692-704. Zbl0016.04004MR1513117JFM62.0772.02
  6. [6] E.M. Friedlander, Algebraic cycles, Chow varieties, and Lawson homology, Comp. Math., 77 (1991), pp. 55-93. Zbl0754.14011MR1091892
  7. [7] E.M. Friedlander - H.B. Lawson, A theory of algebraic cocycles, Ann. Math., 136 (1992), pp. 361-428. Zbl0788.14014MR1185123
  8. [8] W. Fulton, Intersection Theory, Springer (1984). Zbl0541.14005MR732620
  9. [9] L. Guerra, Degrees of Cayley-Chow varieties, Math. Nachr., 171 (1995), pp. 165-176. Zbl0838.14003MR1316357
  10. [10] W.V. Hodge - D. Pedoe, Methods of Algebraic Geometry, vol. II, Cambridge U.P. (1968). Zbl0157.27501
  11. [11] D. Mumford, Algebraic Geometry I, Complex Projective Varieties, Springer (1976). Zbl0821.14001MR453732
  12. [12] D. Mumford - J. FOGARTY, Geometric Invariant Theory, Springer (1982). Zbl0504.14008MR719371
  13. [13] M. Nagata, On the normality of the Chow variety of positive 0-cycles of degree m in an algebraic variety, Memoirs Coll. Sci. Kyoto (A), 29 (1955), pp. 165-176. Zbl0066.14701MR96668
  14. [14] P. Samuel, Lectures on unique factorization domains, Tata Inst. Fund. Research, Bombay (1964). Zbl0184.06601MR214579
  15. [15] H. Weyl, The Classical Groups, their Invariants and Representations, Princeton U.P. (1946). Zbl1024.20502MR1488158

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.