On an elliptic equation with exponential growth

J. A. Aguilar Crespo; I. Peral Alonso

Rendiconti del Seminario Matematico della Università di Padova (1996)

  • Volume: 96, page 143-175
  • ISSN: 0041-8994

How to cite

top

Aguilar Crespo, J. A., and Peral Alonso, I.. "On an elliptic equation with exponential growth." Rendiconti del Seminario Matematico della Università di Padova 96 (1996): 143-175. <http://eudml.org/doc/108406>.

@article{AguilarCrespo1996,
author = {Aguilar Crespo, J. A., Peral Alonso, I.},
journal = {Rendiconti del Seminario Matematico della Università di Padova},
keywords = {multiplicity; -Laplacian; exponential growth; minimal solution; nonexistence of positive solutions},
language = {eng},
pages = {143-175},
publisher = {Seminario Matematico of the University of Padua},
title = {On an elliptic equation with exponential growth},
url = {http://eudml.org/doc/108406},
volume = {96},
year = {1996},
}

TY - JOUR
AU - Aguilar Crespo, J. A.
AU - Peral Alonso, I.
TI - On an elliptic equation with exponential growth
JO - Rendiconti del Seminario Matematico della Università di Padova
PY - 1996
PB - Seminario Matematico of the University of Padua
VL - 96
SP - 143
EP - 175
LA - eng
KW - multiplicity; -Laplacian; exponential growth; minimal solution; nonexistence of positive solutions
UR - http://eudml.org/doc/108406
ER -

References

top
  1. [AR] A. Ambrosetti - P.H. Rabinowitz, Dual variational methods in critical point theory and applications, J. Funct. Abal., 14 (1973), pp. 349-381. Zbl0273.49063MR370183
  2. [An] A. Anane, Simplicite et isolation de la première valeur propre du p-laplacien avec poids, C. R. Acad. Sci. Paris, Série I, 305 (1987), pp. 725-728. Zbl0633.35061MR920052
  3. [Bd] C. Bandle, Existence theorems. Qualitative results and a priori bounds for a class of nonlinear Dirichlet problems, Arch. Rational Mech. Anal., 49 (1973), pp. 241-269. Zbl0335.35046MR454336
  4. [B1] G. Barles, Remarks on the uniqueness results of the first eigenvalue of the p-laplaccian, Ann. Fac. Science de Toulousse, Serie 5, 1 (1988), pp. 65-75. Zbl0621.35068MR971814
  5. [Br] H. Brézis, Analyse fonctionelle, Masson (1983). Zbl0511.46001MR697382
  6. [BPV] L. Boccardo - I. Peral - J.L. Vázquez, Some remarks on the N-Laplacian, preprint. 
  7. [BM] H. Brézis - F. Merle, Uniform estimates and blow-up behavior for solutions of - Δu = V(x) eu in two dimensions, Commu. in P.D.E., 16, nn. 8-9 (1992), pp. 1223-1253. Zbl0746.35006
  8. [Ch] S. Chandrasekar, An Introduction ot the Study of Stellar Structure, Dover Publ. Inc. (1985). Zbl0079.23901
  9. [DiB] E. Di Benedetto, C1,α local regularity of weak solutions of degenerate elliptic equations, Nonlinear analysis. Theory, Methods and Applications, 7, n. 8 (1983), pp. 827-850. Zbl0539.35027
  10. [FK] D.A. Frank-Kamenetskii, Diffusion and Heat Transfer in Chemical Kinetics, Plenum Press (1969). 
  11. [F] H. Fujita, On the nonlinear equation Δu + exp u = 0 and vt = Δu + + exp u, Bull. A.M.S., 75 (1969), pp. 132-135. Zbl0216.12101
  12. [Ge] I.M. Guelfand, Some problems in the theory of quasilinear equations, Amer. Math. Soc. Transl. (Ser. 2), 29 (1963), pp. 295-381. Zbl0127.04901MR153960
  13. [GMP] T. Gallouet - F. Mignot - J.P. Puel, Quelques résultats sur le problème - Δu = exp u, C. R. Acad. Sci. Paris, 307 (1988), pp. 289-292. Zbl0697.35048
  14. [GP] J. Garcia Azozero - I. Peral Alonso, On a Emden-Fowler type equation, Nonlinear Analysis T.M.A., 18, n. 11 (1992), pp. 1085-1097. Zbl0781.35021MR1167423
  15. [GPP] J. Garcia Azozero - I. Peral Alonso - J.P. Puel, Quasilinear problems with exponential growth in the reaction term, Nonlinear Analysis T.M.A., 22, n. 4 (1994), pp. 481-498. Zbl0804.35037MR1266373
  16. [GT] D. Gilbarg - N.S. Trudinger, Elliptic Partial Differential Equations of Second Order, Springer-Verlag, New York (1983). Zbl0361.35003MR737190
  17. [JL] D. Joseph - T.S. Lundgren, Quasilinear Dirichlet problems driven by positive sources, Arch. Rational Mech. Anal., 49 (1973), pp. 241-269. Zbl0266.34021MR340701
  18. [KW] J.L. Kazdan - J.L.W. Warner, Curvature functions for compact 2-manifolds, Ann. Math., 99 (1974), pp. 14-47. Zbl0273.53034MR343205
  19. [L] P. Lindqvist, On the equation div(|∇u|p-2∇u) + λ|μ|p-2 = 0, Proc. Amer. Math. Soc., 109, n. 1 (1990), pp. 157-164. Zbl0714.35029
  20. [MP1] F. Mignot - J.P. Puel, Sur une classe de probleme non lineaire avec non linearite positive, crossante, convexe, Communication in P.D.E., 5 (8) (1980), pp. 791-836. Zbl0456.35034MR583604
  21. [MP2] F. Mignot - J.P. Puel, Solution radiale singuliere de - Δu = λeu, C. R. Acad. Sci. Paris, Série I, 307 (1988), pp. 379-382. Zbl0683.35032
  22. [S] G. Stampacchia, Equations Elliptiques du Second Ordre a Coefficients Discontinus, LesPresses de l'Université deMontreal (1965). Zbl0151.15501MR251373

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.