Remarks on uniqueness results of the first eigenvalue of the p-Laplacian

G. Barles

Annales de la Faculté des sciences de Toulouse : Mathématiques (1988)

  • Volume: 9, Issue: 1, page 65-75
  • ISSN: 0240-2963

How to cite

top

Barles, G.. "Remarks on uniqueness results of the first eigenvalue of the p-Laplacian." Annales de la Faculté des sciences de Toulouse : Mathématiques 9.1 (1988): 65-75. <http://eudml.org/doc/73192>.

@article{Barles1988,
author = {Barles, G.},
journal = {Annales de la Faculté des sciences de Toulouse : Mathématiques},
keywords = {first eigenvalue; p-Laplacian; unique eigenvalue},
language = {eng},
number = {1},
pages = {65-75},
publisher = {UNIVERSITE PAUL SABATIER},
title = {Remarks on uniqueness results of the first eigenvalue of the p-Laplacian},
url = {http://eudml.org/doc/73192},
volume = {9},
year = {1988},
}

TY - JOUR
AU - Barles, G.
TI - Remarks on uniqueness results of the first eigenvalue of the p-Laplacian
JO - Annales de la Faculté des sciences de Toulouse : Mathématiques
PY - 1988
PB - UNIVERSITE PAUL SABATIER
VL - 9
IS - 1
SP - 65
EP - 75
LA - eng
KW - first eigenvalue; p-Laplacian; unique eigenvalue
UR - http://eudml.org/doc/73192
ER -

References

top
  1. [1] Di Benedetto ( E.).— C1+α local regularity of weak solutions of degenerate elliptic Equations. Non linear Anal. TMA, Vol 7, N°8, 1983. Zbl0539.35027MR709038
  2. [2] Di Benedetto ( E.) and Trudinger ( N.S.).— Harnack inequalities for quasi-minima of variational integrals . Anna. Inst. H. Poincaré. Anal. Non Lin., Vol 1, N°4, 1984. Zbl0565.35012MR778976
  3. [3] Di Giorgi ( E.). — Sulla differenziabilita e l'analitica delle estremali degli integrali multipli regolari. Mem. Acad. Sci. Torino. Cl. Sci. Fis. Mat. Nat. (3) t.3, 1957. Zbl0084.31901MR93649
  4. [4] De Thelin ( F.).— Sur l'espace propre associé à la première valeur propre du pseudo Laplacien dans la boule unité. CRAS, Paris, série 198. 
  5. [5] Garcia Azorero ( J.P.) and Peral Alonso ( I.) .— Existence and nonuniqueness for the p-Laplacian : non linear eigenvalues. Preprint. 
  6. [6] Giaquinta ( M.) and Giusti ( E.).— Quasi minima. Annal. Inst. H. Poincaré. Anal. Non Lin. Vol. 1, N°2, 1984. Zbl0541.49008MR778969
  7. [7] Gilbarg ( D.) and Trudinger ( N.S.). — Elliptic partial differential equations of second order. 2nd édition . Ed. Springer-Verlag (New-York), 1983. Zbl0562.35001MR737190
  8. [8] Jensen ( R.). — Boundary regularity for variational inequalities. Indiana Univ. Math. J.291980. Zbl0469.49008MR578201
  9. [9] Ladyzenskaya ( O.A.) and Uraltseva ( N.N.). — Linear and quasi linear elliptic equations. Academic Press (New-York), 1968. Zbl0164.13002MR244627
  10. [10] Laetsch ( Th.). - A uniqueness theorem for elliptic quasivariational inequalities. J. Funct. Anal.12, 1979. MR380554
  11. [11] Lions ( P.L.).— Two remarks on Monge Ampère Equations. Annali di Matematica pura ed applicata (IV). vol. CXLII. Zbl0594.35023
  12. [12] Lions ( P.L.). - Bifurcation and optimal stochastic control. Non linear Anal. TMA, 7, 1983. MR688774
  13. [13] Otani ( M.). — Proceed, Fac. Sci. Tokai Univ.19, 1984. MR753633
  14. [14] Tolksdorf ( P.).- Regularity for a more general class of quasilinear elliptic equations. J. Dif. Equ.51, 1984. Zbl0488.35017MR727034
  15. [15] Tolksdorf ( P.) .— On the Dirichlet problem for quasilinear elliptic equations with conical boundary points. 
  16. [16] Uhlenbeck ( K.).- Regularity for a class of non linear elliptic systems. Acta. Math.138, 1977. Zbl0372.35030MR474389
  17. [17] Diaz ( J.I.) and Saa ( J.E.).- Uniqueness of nonnegative solutions for elliptic nonlinear diffusion equations with a general perturbation term. Proceedings the VIII CEDYA, Santander, 1985. 
  18. [18] Diaz ( J.I.) and Saa ( J.E.).- Uniqueness of nonnegative solutions for second order quasilinear equations with a possible source term. (To appear). 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.