Remarks on uniqueness results of the first eigenvalue of the p-Laplacian
Annales de la Faculté des sciences de Toulouse : Mathématiques (1988)
- Volume: 9, Issue: 1, page 65-75
- ISSN: 0240-2963
Access Full Article
topHow to cite
topBarles, G.. "Remarks on uniqueness results of the first eigenvalue of the p-Laplacian." Annales de la Faculté des sciences de Toulouse : Mathématiques 9.1 (1988): 65-75. <http://eudml.org/doc/73192>.
@article{Barles1988,
author = {Barles, G.},
journal = {Annales de la Faculté des sciences de Toulouse : Mathématiques},
keywords = {first eigenvalue; p-Laplacian; unique eigenvalue},
language = {eng},
number = {1},
pages = {65-75},
publisher = {UNIVERSITE PAUL SABATIER},
title = {Remarks on uniqueness results of the first eigenvalue of the p-Laplacian},
url = {http://eudml.org/doc/73192},
volume = {9},
year = {1988},
}
TY - JOUR
AU - Barles, G.
TI - Remarks on uniqueness results of the first eigenvalue of the p-Laplacian
JO - Annales de la Faculté des sciences de Toulouse : Mathématiques
PY - 1988
PB - UNIVERSITE PAUL SABATIER
VL - 9
IS - 1
SP - 65
EP - 75
LA - eng
KW - first eigenvalue; p-Laplacian; unique eigenvalue
UR - http://eudml.org/doc/73192
ER -
References
top- [1] Di Benedetto ( E.).— C1+α local regularity of weak solutions of degenerate elliptic Equations. Non linear Anal. TMA, Vol 7, N°8, 1983. Zbl0539.35027MR709038
- [2] Di Benedetto ( E.) and Trudinger ( N.S.).— Harnack inequalities for quasi-minima of variational integrals . Anna. Inst. H. Poincaré. Anal. Non Lin., Vol 1, N°4, 1984. Zbl0565.35012MR778976
- [3] Di Giorgi ( E.). — Sulla differenziabilita e l'analitica delle estremali degli integrali multipli regolari. Mem. Acad. Sci. Torino. Cl. Sci. Fis. Mat. Nat. (3) t.3, 1957. Zbl0084.31901MR93649
- [4] De Thelin ( F.).— Sur l'espace propre associé à la première valeur propre du pseudo Laplacien dans la boule unité. CRAS, Paris, série 198.
- [5] Garcia Azorero ( J.P.) and Peral Alonso ( I.) .— Existence and nonuniqueness for the p-Laplacian : non linear eigenvalues. Preprint.
- [6] Giaquinta ( M.) and Giusti ( E.).— Quasi minima. Annal. Inst. H. Poincaré. Anal. Non Lin. Vol. 1, N°2, 1984. Zbl0541.49008MR778969
- [7] Gilbarg ( D.) and Trudinger ( N.S.). — Elliptic partial differential equations of second order. 2nd édition . Ed. Springer-Verlag (New-York), 1983. Zbl0562.35001MR737190
- [8] Jensen ( R.). — Boundary regularity for variational inequalities. Indiana Univ. Math. J.291980. Zbl0469.49008MR578201
- [9] Ladyzenskaya ( O.A.) and Uraltseva ( N.N.). — Linear and quasi linear elliptic equations. Academic Press (New-York), 1968. Zbl0164.13002MR244627
- [10] Laetsch ( Th.). - A uniqueness theorem for elliptic quasivariational inequalities. J. Funct. Anal.12, 1979. MR380554
- [11] Lions ( P.L.).— Two remarks on Monge Ampère Equations. Annali di Matematica pura ed applicata (IV). vol. CXLII. Zbl0594.35023
- [12] Lions ( P.L.). - Bifurcation and optimal stochastic control. Non linear Anal. TMA, 7, 1983. MR688774
- [13] Otani ( M.). — Proceed, Fac. Sci. Tokai Univ.19, 1984. MR753633
- [14] Tolksdorf ( P.).- Regularity for a more general class of quasilinear elliptic equations. J. Dif. Equ.51, 1984. Zbl0488.35017MR727034
- [15] Tolksdorf ( P.) .— On the Dirichlet problem for quasilinear elliptic equations with conical boundary points.
- [16] Uhlenbeck ( K.).- Regularity for a class of non linear elliptic systems. Acta. Math.138, 1977. Zbl0372.35030MR474389
- [17] Diaz ( J.I.) and Saa ( J.E.).- Uniqueness of nonnegative solutions for elliptic nonlinear diffusion equations with a general perturbation term. Proceedings the VIII CEDYA, Santander, 1985.
- [18] Diaz ( J.I.) and Saa ( J.E.).- Uniqueness of nonnegative solutions for second order quasilinear equations with a possible source term. (To appear).
Citations in EuDML Documents
top- J. A. Aguilar Crespo, I. Peral Alonso, On an elliptic equation with exponential growth
- Pavel Drábek, The least eigenvalues of nonhomogeneous degenerated quasilinear eigenvalue problems
- Marino Belloni, Bernd Kawohl, The pseudo--Laplace eigenvalue problem and viscosity solutions as
- Marino Belloni, Bernd Kawohl, The pseudo--Laplace eigenvalue problem and viscosity solutions as → ∞
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.