A capacity method for the study of Dirichlet problems for elliptic systems in varying domains

Gianni Dal Maso; Rodica Toader

Rendiconti del Seminario Matematico della Università di Padova (1996)

  • Volume: 96, page 257-277
  • ISSN: 0041-8994

How to cite

top

Dal Maso, Gianni, and Toader, Rodica. "A capacity method for the study of Dirichlet problems for elliptic systems in varying domains." Rendiconti del Seminario Matematico della Università di Padova 96 (1996): 257-277. <http://eudml.org/doc/108413>.

@article{DalMaso1996,
author = {Dal Maso, Gianni, Toader, Rodica},
journal = {Rendiconti del Seminario Matematico della Università di Padova},
keywords = {capacity},
language = {eng},
pages = {257-277},
publisher = {Seminario Matematico of the University of Padua},
title = {A capacity method for the study of Dirichlet problems for elliptic systems in varying domains},
url = {http://eudml.org/doc/108413},
volume = {96},
year = {1996},
}

TY - JOUR
AU - Dal Maso, Gianni
AU - Toader, Rodica
TI - A capacity method for the study of Dirichlet problems for elliptic systems in varying domains
JO - Rendiconti del Seminario Matematico della Università di Padova
PY - 1996
PB - Seminario Matematico of the University of Padua
VL - 96
SP - 257
EP - 277
LA - eng
KW - capacity
UR - http://eudml.org/doc/108413
ER -

References

top
  1. [1] M. Avellaneda - F.H. Lin, Compactness methods in the theory of homogenization, Comm. Pure Appl. Math., 40 (1987), pp. 803-847. Zbl0632.35018MR910954
  2. [2] J. Baxter - G. DAL MASO - U. Mosco, Stopping times and Γ-convergence, Trans. Amer. Math. Soc., 303 (1987), pp. 1-38. Zbl0627.60071
  3. [3] G. Buttazzo - DAL MASO - U. Mosco, A derivation theorem for capacities with respect to a Radon measure, J. Funct. Anal., 71 (1987), pp. 263-278. Zbl0622.28006MR880980
  4. [4] J. Casado Diaz - A. Garroni, Asymptotic behaviour of nonlinear elliptic systems on varying domains, in preparation. Zbl0952.35036
  5. [5] D. Cioranescu - F. Murat, Un terme étrange venu d'ailleurs, I and II, in Nonlinear Partial Differential Equations and Their Applications. Collège de France Seminar, Vol. II, pp. 98-138, Vol. III, pp. 154-178, Res. Notes in Math., 60 and 70, Pitman, London (1982) and (1983). Zbl0496.35030MR652509
  6. [6] G. Dal Maso - U. Mosco, Wiener criteria and energy decay for relaxed Dirichlet problems, Arch. Rational Mech. Anal., 95 (1986), pp. 345-387. Zbl0634.35033MR853783
  7. [7] G. Dal Maso - U. Mosco, Wiener's criterion and Γ-convergence, Appl. Math. Optim., 15 (1987), pp. 15-63. Zbl0644.35033
  8. [8] A. Defranceschi - E. Vitali, Limits of minimum problems with convex obstacles for vector valued functions, Applicable Anal., 52 (1994), pp. 1-33. Zbl0839.49011MR1380324
  9. [9] L.C. Evans - R.F. Gariepy, Measure Theory and Fine Properties of Functions, CRC Press, Boca Raton (1992). Zbl0804.28001MR1158660
  10. [10] T. Kato, Schrödinger operators with singular potentials, Israel J. Math., 13 (1973), pp. 135-148. Zbl0246.35025MR333833
  11. [11] A.V. Marchenko - E. YA. KHRUSLOV, Boundary Value Problems in Domains with Finely Granulated Boundaries (in Russian), Naukova Dumka, Kiev (1974). Zbl0289.35002
  12. [12] I.V. Skrypnik, Methods of Investigation of Nonlinear Elliptic Boundary Value Problems (in Russian), Nauka, Moscow (1990). Zbl0743.35026

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.