On the generation of the coefficient field of a newform by a single Hecke eigenvalue
Koopa Tak-Lun Koo[1]; William Stein[1]; Gabor Wiese[2]
- [1] Department of Mathematics University of Washington Box 354350 Seattle, WA 98195 USA
- [2] Institut für Experimentelle Mathematik Universität Duisburg-Essen Ellernstraße 29 45326 Essen Germany
Journal de Théorie des Nombres de Bordeaux (2008)
- Volume: 20, Issue: 2, page 373-384
- ISSN: 1246-7405
Access Full Article
topAbstract
topHow to cite
topKoo, Koopa Tak-Lun, Stein, William, and Wiese, Gabor. "On the generation of the coefficient field of a newform by a single Hecke eigenvalue." Journal de Théorie des Nombres de Bordeaux 20.2 (2008): 373-384. <http://eudml.org/doc/10842>.
@article{Koo2008,
abstract = {Let $f$ be a non-CM newform of weight $k \ge 2$. Let $L$ be a subfield of the coefficient field of $f$. We completely settle the question of the density of the set of primes $p$ such that the $p$-th coefficient of $f$ generates the field $L$. This density is determined by the inner twists of $f$. As a particular case, we obtain that in the absence of nontrivial inner twists, the density is $1$ for $L$ equal to the whole coefficient field. We also present some new data on reducibility of Hecke polynomials, which suggest questions for further investigation.},
affiliation = {Department of Mathematics University of Washington Box 354350 Seattle, WA 98195 USA; Department of Mathematics University of Washington Box 354350 Seattle, WA 98195 USA; Institut für Experimentelle Mathematik Universität Duisburg-Essen Ellernstraße 29 45326 Essen Germany},
author = {Koo, Koopa Tak-Lun, Stein, William, Wiese, Gabor},
journal = {Journal de Théorie des Nombres de Bordeaux},
keywords = {Hecke eigenvalue; newform},
language = {eng},
number = {2},
pages = {373-384},
publisher = {Université Bordeaux 1},
title = {On the generation of the coefficient field of a newform by a single Hecke eigenvalue},
url = {http://eudml.org/doc/10842},
volume = {20},
year = {2008},
}
TY - JOUR
AU - Koo, Koopa Tak-Lun
AU - Stein, William
AU - Wiese, Gabor
TI - On the generation of the coefficient field of a newform by a single Hecke eigenvalue
JO - Journal de Théorie des Nombres de Bordeaux
PY - 2008
PB - Université Bordeaux 1
VL - 20
IS - 2
SP - 373
EP - 384
AB - Let $f$ be a non-CM newform of weight $k \ge 2$. Let $L$ be a subfield of the coefficient field of $f$. We completely settle the question of the density of the set of primes $p$ such that the $p$-th coefficient of $f$ generates the field $L$. This density is determined by the inner twists of $f$. As a particular case, we obtain that in the absence of nontrivial inner twists, the density is $1$ for $L$ equal to the whole coefficient field. We also present some new data on reducibility of Hecke polynomials, which suggest questions for further investigation.
LA - eng
KW - Hecke eigenvalue; newform
UR - http://eudml.org/doc/10842
ER -
References
top- S. Baba, R. Murty, Irreducibility of Hecke Polynomials. Math. Research Letters 10 (2003), no. 5-6, 709–715. Zbl1162.11335MR2024727
- D. W. Farmer, K. James, The irreducibility of some level 1 Hecke polynomials. Math. Comp. 71 (2002), no. 239, 1263–1270. Zbl0995.11032MR1898755
- W. Fulton, J. Harris, Representation Theory, A First Course. Springer, 1991. Zbl0744.22001MR1153249
- J. Kevin, K. Ono, A note on the Irreducibility of Hecke Polynomials. J. Number Theory 73 (1998), 527–532. Zbl0931.11011MR1658012
- K. A. Ribet, Twists of modular forms and endomorphisms of abelian varieties. Math. Ann. 253 (1980), no. 1, 43–62. Zbl0421.14008MR594532
- K. A. Ribet, On l-adic representations attached to modular forms. II. Glasgow Math. J. 27 (1985), 185–194. Zbl0596.10027MR819838
- J.-P. Serre, Quelques applications du théorème de densité de Chebotarev. Inst. Hautes Etudes Sci. Publ. Math. 54 (1981), 323–401. Zbl0496.12011MR644559
- W. Stein, Sage Mathematics Software (Version 3.0). The SAGE Group, 2008, http://www.sagemath.org.
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.