The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Displaying similar documents to “On the generation of the coefficient field of a newform by a single Hecke eigenvalue”

Conjugacy classes of series in positive characteristic and Witt vectors.

Sandrine Jean (2009)

Journal de Théorie des Nombres de Bordeaux

Similarity:

Let k be the algebraic closure of 𝔽 p and K be the local field of formal power series with coefficients in k . The aim of this paper is the description of the set 𝒴 n of conjugacy classes of series of order p n for the composition law. This work is concerned with the formal power series with coefficients in a field of characteristic p which are invertible and of finite order p n for the composition law. In order to investigate Oort’s conjecture, I give a description of conjugacy classes of series...

A system of simultaneous congruences arising from trinomial exponential sums

Todd Cochrane, Jeremy Coffelt, Christopher Pinner (2006)

Journal de Théorie des Nombres de Bordeaux

Similarity:

For a prime p and positive integers < k < h < p with d = ( h , k , , p - 1 ) , we show that M , the number of simultaneous solutions x , y , z , w in p * to x h + y h = z h + w h , x k + y k = z k + w k , x + y = z + w , satisfies M 3 d 2 ( p - 1 ) 2 + 25 h k ( p - 1 ) . When h k = o ( p d 2 ) we obtain a precise asymptotic count on M . This leads to the new twisted exponential sum bound x = 1 p - 1 χ ( x ) e 2 π i f ( x ) / p 3 1 4 d 1 2 p 7 8 + 5 h k 1 4 p 5 8 , for trinomials f = a x h + b x k + c x , and to results on the average size of such sums.

On the linear independence of p -adic L -functions modulo p

Bruno Anglès, Gabriele Ranieri (2010)

Annales de l’institut Fourier

Similarity:

Let p 3 be a prime. Let n such that n 1 , let χ 1 , ... , χ n be characters of conductor d not divided by p and let ω be the Teichmüller character. For all i between 1 and n , for all j between 0 and ( p - 3 ) / 2 , set θ i , j = χ i ω 2 j + 1 if χ i is odd ; χ i ω 2 j if χ i is even . Let K = p ( χ 1 , ... , χ n ) and let π be a prime of the valuation ring 𝒪 K of K . For all i , j let f ( T , θ i , j ) be the Iwasawa series associated to θ i , j and f ( T , θ i , j ) ¯ its reduction modulo ( π ) . Finally let 𝔽 p ¯ be an algebraic closure of 𝔽 p . Our main result is that if the characters χ i are all distinct modulo ( π ) , then 1 and the series...

Specializations of one-parameter families of polynomials

Farshid Hajir, Siman Wong (2006)

Annales de l’institut Fourier

Similarity:

Let K be a number field, and suppose λ ( x , t ) K [ x , t ] is irreducible over K ( t ) . Using algebraic geometry and group theory, we describe conditions under which the K -exceptional set of λ , i.e. the set of α K for which the specialized polynomial λ ( x , α ) is K -reducible, is finite. We give three applications of the methods we develop. First, we show that for any fixed n 10 , all but finitely many K -specializations of the degree n generalized Laguerre polynomial L n ( t ) ( x ) are K -irreducible and have Galois group S n . Second, we study...

On the generalized principal ideal theorem of complex multiplication

Reinhard Schertz (2006)

Journal de Théorie des Nombres de Bordeaux

Similarity:

In the p n -th cyclotomic field p n , p a prime number, n , the prime p is totally ramified and the only ideal above p is generated by ω n = ζ p n - 1 , with the primitive p n -th root of unity ζ p n = e 2 π i p n . Moreover these numbers represent a norm coherent set, i.e. N p n + 1 / p n ( ω n + 1 ) = ω n . It is the aim of this article to establish a similar result for the ray class field K 𝔭 n of conductor 𝔭 n over an imaginary quadratic number field K where 𝔭 n is the power of a prime ideal in K . Therefore the exponential function has to be replaced by a suitable elliptic...