On the structure of the solution set of evolution inclusions with time-dependent subdifferentials
Nikolas S. Papageorgiou; Francesca Papalini
Rendiconti del Seminario Matematico della Università di Padova (1997)
- Volume: 97, page 163-186
- ISSN: 0041-8994
Access Full Article
topHow to cite
topPapageorgiou, Nikolas S., and Papalini, Francesca. "On the structure of the solution set of evolution inclusions with time-dependent subdifferentials." Rendiconti del Seminario Matematico della Università di Padova 97 (1997): 163-186. <http://eudml.org/doc/108420>.
@article{Papageorgiou1997,
author = {Papageorgiou, Nikolas S., Papalini, Francesca},
journal = {Rendiconti del Seminario Matematico della Università di Padova},
keywords = {evolution inclusions; subdifferentials; Cauchy problem; parabolic; systems},
language = {eng},
pages = {163-186},
publisher = {Seminario Matematico of the University of Padua},
title = {On the structure of the solution set of evolution inclusions with time-dependent subdifferentials},
url = {http://eudml.org/doc/108420},
volume = {97},
year = {1997},
}
TY - JOUR
AU - Papageorgiou, Nikolas S.
AU - Papalini, Francesca
TI - On the structure of the solution set of evolution inclusions with time-dependent subdifferentials
JO - Rendiconti del Seminario Matematico della Università di Padova
PY - 1997
PB - Seminario Matematico of the University of Padua
VL - 97
SP - 163
EP - 186
LA - eng
KW - evolution inclusions; subdifferentials; Cauchy problem; parabolic; systems
UR - http://eudml.org/doc/108420
ER -
References
top- [1] M.E. Ballotti, Aronszajn's theorem for a parabolic partial differential equation, Nonl. Anal. T.M.A., 9 (1985), pp. 1183-1188. Zbl0583.35053MR813652
- [2] V. Barbu, Nonlinear Semigroups and DifferentialEquations in Banach Spaces, Noordhoff International Publishing, Leyden, The Netherlands (1976). Zbl0328.47035MR390843
- [3] A. Bressan - G. Colombo, Extension and selections of maps with decomposable values, Studia Math., 90 (1988), pp. 69-86. Zbl0677.54013MR947921
- [4] H. Brezis, Operateurs Maximaux Monotones et semi-groupes de contractions dans les espaces de Hilbert, North-Holland, Amsterdam (1973). Zbl0252.47055MR348562
- [5] A. Cellina, On the set of solution to Lipschitzian differential inclusions, Diff. Integ. Equations, 1 (1988), pp. 495-500. Zbl0723.34009MR945823
- [6] F. De Blasi, Characterizations of certain classes of semicontinuous multifunctions by continuous approximations, J. Math. Anal. Appl., 106 (1985), pp. 1-18. Zbl0574.54012MR780314
- [7] F. De Blasi - J. Myjak, On the solution sets for differential inclusions, Bull. Pol. Acad. Sci., 33 (1985), pp. 17-23. Zbl0571.34008MR798723
- [8] F. De Blasi - G. Pianigiani, Non-convex valued differential inclusions in Banach spaces, J. Math. Anal. Appl., 157 (1991), pp. 469-494. Zbl0728.34013MR1112329
- [9] F. De Blasi - G. Pianigiani, Topological properties of nonconvex differential inclusions, Nonl. Anal. T.M.A., 20 (1993), pp. 871-894. Zbl0774.34010MR1214750
- [10] F. De Blasi - G. Pianigiani - V. Staicu, Topological properties of nonconvex differential inclusions of evolution type, Nonl. Anal. T.M.A., 23 (1995), pp. 711-720. Zbl0828.34010MR1319080
- [11] C.J. Himmelberg, Measurable relations, Fundamenta Math., 87 (1975), pp. 53-72. Zbl0296.28003MR367142
- [12] C.J. Himmelberg - F. S. VAN VLECK, A note on solution sets of differential inclusions, Rocky Mountain J. Math., 12 (1982), pp. 621-625. Zbl0531.34007MR683856
- [13] S. Hu - V. Lakshmikantham - N.S. Papageorgiou, On the properties of the solution set of semilinear evolution inclusions, to appear. Zbl0831.34014MR1330643
- [14] S. Hu - N. S. PAPAGEORGIOU, On the topological regularity of the solution set of differential inclusions with constraints, J. Diff. Equations, 107 (1994), pp. 280-289. Zbl0796.34017MR1264523
- [15] D.M. Hyman, On decreasing sequences of compact absolute retracts, Fundamenta Math., 64 (1969), pp. 91-97. Zbl0174.25804MR253303
- [16] N. Kemnochi, Some nonlinear parabolic variational inequalities, Israel J. Math., 22 (1975), pp. 305-331. Zbl0327.49004
- [17] N. Kikuchi, Kneser's property for du/dt = Δu + √u, Keio Univ. Math. Sem. Rep., 3 (1978), pp. 45-48. Zbl0391.35011
- [18] N.S. Papageorgiou, Convergence theorems for Banach space valued integrable multifunctions, Inter. Math. Math. Sci., 10 (1987), pp. 433-442. Zbl0619.28009MR896595
- [19] N.S. Papageorgiou, On measurable multifunctions with applications to random multivalued equations, Math. Japonica, 32 (1987), pp. 437-464. Zbl0634.28005MR914749
- [20] N.S. Papageorgiou, On the solution set of evolution inclusions driven by time-dependent subdifferential, Math. Japonica, 37 (1992), pp. 1087-1099. Zbl0810.34059MR1196384
- [21] N.S. Papageorgiou, On the topological property of the solution set of evolution inclusions involving time-dependent subdifferential operators, Boll. Un. Mat. Ital., 8-B (1994). Zbl0845.34066
- [22] J. Rauch, Discontinuous semilinear differential equations and multiple valued maps, Proc. Amer. Math. Soc., 64 (1977). Zbl0413.35031MR442453
- [23] V. Staicu, Sissa report, 42M (1990).
- [24] D.H. Wagner, Survey of measurable selection theorems, SIAM J. Control Optim., 15 (1977), pp. 859-903. Zbl0407.28006MR486391
- [25] Y. Yamada, On evolution equations generated by subdifferential operators, J. Fac. Sci. Univ. Tokyo, 23 (1976), pp. 491-515. Zbl0343.34053MR425701
- [26] S. Yotsutani, Evolution equations associated with subdifferentials, J. Math. Soc. Japan, 31 (1978), pp. 623-646. Zbl0405.35043MR544681
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.