On the structure of the solution set of evolution inclusions with time-dependent subdifferentials

Nikolas S. Papageorgiou; Francesca Papalini

Rendiconti del Seminario Matematico della Università di Padova (1997)

  • Volume: 97, page 163-186
  • ISSN: 0041-8994

How to cite

top

Papageorgiou, Nikolas S., and Papalini, Francesca. "On the structure of the solution set of evolution inclusions with time-dependent subdifferentials." Rendiconti del Seminario Matematico della Università di Padova 97 (1997): 163-186. <http://eudml.org/doc/108420>.

@article{Papageorgiou1997,
author = {Papageorgiou, Nikolas S., Papalini, Francesca},
journal = {Rendiconti del Seminario Matematico della Università di Padova},
keywords = {evolution inclusions; subdifferentials; Cauchy problem; parabolic; systems},
language = {eng},
pages = {163-186},
publisher = {Seminario Matematico of the University of Padua},
title = {On the structure of the solution set of evolution inclusions with time-dependent subdifferentials},
url = {http://eudml.org/doc/108420},
volume = {97},
year = {1997},
}

TY - JOUR
AU - Papageorgiou, Nikolas S.
AU - Papalini, Francesca
TI - On the structure of the solution set of evolution inclusions with time-dependent subdifferentials
JO - Rendiconti del Seminario Matematico della Università di Padova
PY - 1997
PB - Seminario Matematico of the University of Padua
VL - 97
SP - 163
EP - 186
LA - eng
KW - evolution inclusions; subdifferentials; Cauchy problem; parabolic; systems
UR - http://eudml.org/doc/108420
ER -

References

top
  1. [1] M.E. Ballotti, Aronszajn's theorem for a parabolic partial differential equation, Nonl. Anal. T.M.A., 9 (1985), pp. 1183-1188. Zbl0583.35053MR813652
  2. [2] V. Barbu, Nonlinear Semigroups and DifferentialEquations in Banach Spaces, Noordhoff International Publishing, Leyden, The Netherlands (1976). Zbl0328.47035MR390843
  3. [3] A. Bressan - G. Colombo, Extension and selections of maps with decomposable values, Studia Math., 90 (1988), pp. 69-86. Zbl0677.54013MR947921
  4. [4] H. Brezis, Operateurs Maximaux Monotones et semi-groupes de contractions dans les espaces de Hilbert, North-Holland, Amsterdam (1973). Zbl0252.47055MR348562
  5. [5] A. Cellina, On the set of solution to Lipschitzian differential inclusions, Diff. Integ. Equations, 1 (1988), pp. 495-500. Zbl0723.34009MR945823
  6. [6] F. De Blasi, Characterizations of certain classes of semicontinuous multifunctions by continuous approximations, J. Math. Anal. Appl., 106 (1985), pp. 1-18. Zbl0574.54012MR780314
  7. [7] F. De Blasi - J. Myjak, On the solution sets for differential inclusions, Bull. Pol. Acad. Sci., 33 (1985), pp. 17-23. Zbl0571.34008MR798723
  8. [8] F. De Blasi - G. Pianigiani, Non-convex valued differential inclusions in Banach spaces, J. Math. Anal. Appl., 157 (1991), pp. 469-494. Zbl0728.34013MR1112329
  9. [9] F. De Blasi - G. Pianigiani, Topological properties of nonconvex differential inclusions, Nonl. Anal. T.M.A., 20 (1993), pp. 871-894. Zbl0774.34010MR1214750
  10. [10] F. De Blasi - G. Pianigiani - V. Staicu, Topological properties of nonconvex differential inclusions of evolution type, Nonl. Anal. T.M.A., 23 (1995), pp. 711-720. Zbl0828.34010MR1319080
  11. [11] C.J. Himmelberg, Measurable relations, Fundamenta Math., 87 (1975), pp. 53-72. Zbl0296.28003MR367142
  12. [12] C.J. Himmelberg - F. S. VAN VLECK, A note on solution sets of differential inclusions, Rocky Mountain J. Math., 12 (1982), pp. 621-625. Zbl0531.34007MR683856
  13. [13] S. Hu - V. Lakshmikantham - N.S. Papageorgiou, On the properties of the solution set of semilinear evolution inclusions, to appear. Zbl0831.34014MR1330643
  14. [14] S. Hu - N. S. PAPAGEORGIOU, On the topological regularity of the solution set of differential inclusions with constraints, J. Diff. Equations, 107 (1994), pp. 280-289. Zbl0796.34017MR1264523
  15. [15] D.M. Hyman, On decreasing sequences of compact absolute retracts, Fundamenta Math., 64 (1969), pp. 91-97. Zbl0174.25804MR253303
  16. [16] N. Kemnochi, Some nonlinear parabolic variational inequalities, Israel J. Math., 22 (1975), pp. 305-331. Zbl0327.49004
  17. [17] N. Kikuchi, Kneser's property for du/dt = Δu + √u, Keio Univ. Math. Sem. Rep., 3 (1978), pp. 45-48. Zbl0391.35011
  18. [18] N.S. Papageorgiou, Convergence theorems for Banach space valued integrable multifunctions, Inter. Math. Math. Sci., 10 (1987), pp. 433-442. Zbl0619.28009MR896595
  19. [19] N.S. Papageorgiou, On measurable multifunctions with applications to random multivalued equations, Math. Japonica, 32 (1987), pp. 437-464. Zbl0634.28005MR914749
  20. [20] N.S. Papageorgiou, On the solution set of evolution inclusions driven by time-dependent subdifferential, Math. Japonica, 37 (1992), pp. 1087-1099. Zbl0810.34059MR1196384
  21. [21] N.S. Papageorgiou, On the topological property of the solution set of evolution inclusions involving time-dependent subdifferential operators, Boll. Un. Mat. Ital., 8-B (1994). Zbl0845.34066
  22. [22] J. Rauch, Discontinuous semilinear differential equations and multiple valued maps, Proc. Amer. Math. Soc., 64 (1977). Zbl0413.35031MR442453
  23. [23] V. Staicu, Sissa report, 42M (1990). 
  24. [24] D.H. Wagner, Survey of measurable selection theorems, SIAM J. Control Optim., 15 (1977), pp. 859-903. Zbl0407.28006MR486391
  25. [25] Y. Yamada, On evolution equations generated by subdifferential operators, J. Fac. Sci. Univ. Tokyo, 23 (1976), pp. 491-515. Zbl0343.34053MR425701
  26. [26] S. Yotsutani, Evolution equations associated with subdifferentials, J. Math. Soc. Japan, 31 (1978), pp. 623-646. Zbl0405.35043MR544681

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.