Topological structure of solution sets: current results

Lech Górniewicz

Archivum Mathematicum (2000)

  • Volume: 036, Issue: 5, page 343-382
  • ISSN: 0044-8753

How to cite

top

Górniewicz, Lech. "Topological structure of solution sets: current results." Archivum Mathematicum 036.5 (2000): 343-382. <http://eudml.org/doc/248648>.

@article{Górniewicz2000,
author = {Górniewicz, Lech},
journal = {Archivum Mathematicum},
keywords = {fixed points; multivalued maps; inverse systems; acyclicity; topological structure; limit map; topological degree; admissible maps},
language = {eng},
number = {5},
pages = {343-382},
publisher = {Department of Mathematics, Faculty of Science of Masaryk University, Brno},
title = {Topological structure of solution sets: current results},
url = {http://eudml.org/doc/248648},
volume = {036},
year = {2000},
}

TY - JOUR
AU - Górniewicz, Lech
TI - Topological structure of solution sets: current results
JO - Archivum Mathematicum
PY - 2000
PB - Department of Mathematics, Faculty of Science of Masaryk University, Brno
VL - 036
IS - 5
SP - 343
EP - 382
LA - eng
KW - fixed points; multivalued maps; inverse systems; acyclicity; topological structure; limit map; topological degree; admissible maps
UR - http://eudml.org/doc/248648
ER -

References

top
  1. 1. R. P. Agarwal, D. O’Regan, The solutions set of integral inclusions on the half line, Analysis (2000), 1–7. MR1759068
  2. 2. R. R. Akhmerov M. I. Kamenskii A. S. Potapov A. E. Rodkina, B. N. Sadovskii, Measures of Noncompactness and Condensing Operators,, (translated from Russian), Birkhauser, Berlin, 1992. (1992) MR1153247
  3. 3. J. Andres, On the multivalued Poincaré operators, TMNA 10 (1997), 171–182. (1997) Zbl0909.47038MR1646627
  4. 4. J. Andres G. Gabor, L. Górniewicz, Boundary value problems on infinite intervals, Trans. Amer. Math. Soc. 351 (1999), 4861–4903. (1999) MR1603870
  5. 5. J. Andres G. Gabor, L. Górniewicz, Topological structure of solution sets to multivalued asymptotic problems, Z. Anal. Anwendungen 18, 4 (1999), 1–20. (1999) 
  6. 6. J. Andres G. Gabor, L. Górniewicz, Acyclicity of solutions sets to functional inclusions, Nonlinear Analysis TMA (to appear). MR1894303
  7. 7. J. Andres, L. Górniewicz, On the Banach contraction principle for multivalued mappings, Lecture Notes in Mathematics (to appear). MR1842872
  8. 8. J. Andres L. Górniewicz, M. Lewicka, Partially dissipative periodic processes, Banach Center Publ. 35 (1996), 109–118. (1996) MR1448430
  9. 9. G. Anichini, P. Zecca, Multivalued differential equations in a Banach space: an application to control theory, J. Optim. Th. Appl. 21 (1977), 477–486. (1977) MR0440144
  10. 10. N. Aronszajn, Le correspondant topologique de l’unicité dans la théorie des équations différentielles, Ann. Math. 43 (1942), 730–738. (1942) Zbl0061.17106MR0007195
  11. 11. Z. Artstein, Continuous dependence on parameters of solutions of operator equations, Trans. Amer. Math. Soc. 231 (1977), 143–166. (1977) MR0445351
  12. 12. A. Augustynowicz Z. Dzedzej, B. D. Gelman, The solution set to BVP for some functional differential inclusions, Set-Valued Analysis 6 (1998), 257–263. (1998) MR1669783
  13. 13. R. Bader, W. Kryszewski, On the solution sets of constrained differential inclusions with applications, Set Valued Anal. (to appear). Zbl0991.34011MR1863363
  14. 14. M. E. Ballotti, Aronszajn’s theorem for a parabolic partial differential equation, Non-linear Anal. TMA 9, No. 11 (1985), 1183–1187. (1985) Zbl0583.35053MR0813652
  15. 15. J. Bebernes, M. Martelli, On the structure of the solution set for periodic boundary value problems, Nonlinear Anal. TMA 4, No. 4 (1980), 821–830. (1980) Zbl0453.34019MR0582550
  16. 16. J. Bebernes, K. Schmitt, Invariant sets and the Hukuhara–Kneser property for systems of parabolic partial differential equations, Rocky Mount. J. Math. 7, No. 3 (1967), 557–567. (1967) MR0600519
  17. 17. R. Bielawski L. Górniewicz, S. Plaskacz, Topological approach to differential inclusions on closed sets of R n , , Dynamics Reported 1 (1992), 225–250. (1992) 
  18. 18. D. Bielawski T. Pruszko, On the structure of the set of solutions of a functional equation with application to boundary value problems, Ann. Polon. Math. 53, No. 3 (1991), 201–209. (1991) MR1109588
  19. 19. A. W. Bogatyrev, Fixed points and properties of solutions of differential inclusions, Math. Sbornik 47 (1983), 895–909 (in Russian). (1983) MR0712098
  20. 20. A. Bressan A. Cellina, A. Fryszkowski, A class of absolute retracts in spaces of integrable functions, Proc. Amer. Math. Soc. 112 (1991), 413–418. (1991) MR1045587
  21. 21. F. E. Browder, C. P. Gupta, Topological degree and nonlinear mappings of analytic type in Banach spaces, J. Math. Anal. Appl. 26 (1969), 730–738. (1969) Zbl0176.45401MR0257826
  22. 22. J. Bryszewski L. Górniewicz, T. Pruszko, An application of the topological degree theory to the study of the Darboux problem for hyperbolic equations, J. Math. Anal. Appl. 76 (1980), 107–115. (1980) MR0586649
  23. 23. A. I. Bulgakov, L. N. Lyapin, Some properties of the set of solutions of a Volterra–Hammerstein integral inclusion, Diff. Uravni. 14, No. 8 (1978), 1043–1048. (1978) Zbl0433.45018MR0507406
  24. 24. A. I. Bulgakov, L. N. Lyapin, Certain properties of the set of solutions of the Volterra–Hammerstein integral inclusion, Differents. Uravn. 14, No. 8 (1978), 1465–1472. (1978) MR0507406
  25. 25. A. I. Bulgakov, L. N. Lyapin, On the connectedness of sets of solutions of functional inclusions, Mat. Sbornik 119, No. 2 (1982), 295–300. (1982) MR0675198
  26. 26. A. Cellina, On the existence of solutions of ordinary differential equations in a Banach space, Funkc. Ekvac. 14 (1971), 129–136. (1971) MR0304805
  27. 27. A. Cellina, On the local existence of solutions of ordinary differential equations, Bull. Acad. Polon. Sci. 20 (1972), 293–296. (1972) Zbl0255.34053MR0315237
  28. 28. A. Cellina, On the nonexistence of solutions of differential equations in nonreflexive spaces, Bull. Amer. Math. Soc. 78 (1972), 1069–1072. (1972) MR0312017
  29. 29. J. Chandra V. Lakshmikantham, A. R. Mitchell, Existence of solutions of boundary value problems for nonlinear second order systems in a Banach space, Nonlinear Anal. TMA 2 (1978), 157–168. (1978) MR0512279
  30. 30. S. N. Chow, J. D. Schur, An existence theorem for ordinary differential equations in Banach spaces, Bull. Amer. Math. Soc. 77 (1971), 1018–1020. (1971) MR0287127
  31. 31. S. N. Chow, J. D. Schur, Fundamental theory of contingent differential equations in Banach spaces, Trans. Amer. Math. Soc. 179 (1973), 133–144. (1973) MR0324162
  32. 32. M. Cichoń, I. Kubiaczyk, Some remarks on the structure of the solutions set for differential inclusions in Banach spaces, J. Math. Anal. Appl. 233 (1999), 597–606. (1999) MR1689606
  33. 33. A. Constantin, Stability of solution sets of differential equations with multivalued right hand side, J. Diff. Equs. 114 (1994), 243–252. (1994) Zbl0808.34013MR1302143
  34. 34. G. Conti W. Kryszewski, P. Zecca, On the solvability of systems of noncompact inclusions, Ann. Mat. Pura Appl. (4), 160 (1991), 371–408. (1991) MR1163216
  35. 35. G. Conti V. V. Obukhovskii, P. Zecca, On the topological structure of the solution set for a semilinear functional-differential inclusion in a Banach space, (Preprint). MR1448435
  36. 36. J.-F. Couchouron, M. Kamenskii, Perturbations d’inclusions paraboliques par des opérateurs condensants, C. R. Acad. Sci. Paris 320 (1995), Serie I. 1–6. (1995) MR1340059
  37. 37. H. Covitz S. B. Nadler, Jr., Multi-valued contraction mappings in generalized metric spaces, Israel J. Math. 8 (1970), 5–11. (1970) MR0263062
  38. 38. K. Czarnowski, Structure of the set of solutions of an initial-boundary value problem for a parabolic partial differential equations in an unbounded domain, Nonlinear Anal. TMA 27, no. 6 (1996), 723–729. (1996) MR1399071
  39. 39. K. Czarnowski, On the structure of fixed point sets of ’k-set contractions’ in B 0 spaces, Demonstratio Math. 30 (1997), 233–244. (1997) MR1469589
  40. 40. K. Czarnowski, T. Pruszko, On the structure of fixed point sets of compact maps in B 0 spaces with applications to integral and differential equations in unbounded domain, J. Math. Anal. Appl. 154 (1991), 151–163. (1991) MR1087965
  41. 41. J. L. Davy, Properties of the solution set of a generalized differential equations, Bull. Austr. Math. Soc. 6 (1972), 379–389. (1972) MR0303023
  42. 42. F. S. De Blasi, Existence and stability of solutions for autonomous multivalued differential equations in a Banach space, Rend. Accad. Naz. Lincei, Serie VII, 60 (1976), 767–774. (1976) MR0481328
  43. 43. F. S. De Blasi, On a property of the unit sphere in a Banach space, Bull. Soc. Math. R. S. Roumaine 21 (1977), 259–262. (1977) Zbl0365.46015MR0482402
  44. 44. F. S. De Blasi, Characterizations of certain classes of semicontinuous multifunctions by continuous approximations, J. Math. Anal. Appl. 106, No. 1 (1985), 1–8. (1985) Zbl0574.54012MR0780314
  45. 45. F. S. De Blasi L. Górniewicz, G. Pianigiani, Topological degree and periodic solutions of differential inclusions, Nonlinear Anal. TMA 37 (1999), 217–245. (1999) MR1689752
  46. 46. F. S. De Blasi, J. Myjak, On the solutions sets for differential inclusions, Bull. Polon. Acad. Sci. 33 (1985), 17–23. (1985) Zbl0571.34008MR0798723
  47. 47. F. S. De Blasi, J. Myjak, O, n the structure of the set of solutions of the Darboux problem for hyperbolic equations, Proc. Edinburgh Math. Soc., Ser. 2 29, No. 1 (1986), 7–14. (1986) MR0829175
  48. 48. F. S. De Blasi, G. Pianigiani, On the solution sets of nonconvex differential inclusions, J. Diff. Equs. 128 (1996), 541–555. (1996) Zbl0853.34013MR1398331
  49. 49. F. S. De Blasi, G. Pianigiani, Solution sets of boundary value problems for nonconvex differential inclusions, Nonlinear Anal. TMA 1 (1993), 303–313. (1993) Zbl0785.34018MR1233098
  50. 50. F. S. De Blasi G. Pianigiani, V. Staicu, Topological properties of nonconvex differential inclusions of evolution type, Nonlinear Anal. TMA 24 (1995), 711–720. (1995) MR1319080
  51. 51. K. Deimling, Periodic solutions of differential equations in Banach spaces, Man. Math. 24 (1978), 31–44. (1978) Zbl0373.34032MR0499551
  52. 52. K. Deimling, Open problems for ordinary differential equations in a Banach space, (in the book: Equationi Differenziali), Florence, 1978. (1978) 
  53. 53. K. Deimling, M. R. Mohana Rao, On solutions sets of multivalued differential equations, Applicable Analysis 30 (1988), 129–135. (1988) 
  54. 54. R. Dragoni J. W. Macki P. Nistri, P. Zecca, Solution Sets of Differential Equations in Abstract Spaces, Pitman Research Notes in Mathematics Series, 342, Longman, Harlow, 1996. (1996) MR1427944
  55. 55. J. Dubois, P. Morales, On the Hukuhara–Kneser property for some Cauchy problems in locally convex topological vector spaces, Lecture Notes in Math. vol. 964, pp. 162–170, Springer, Berlin, 1982. (1982) Zbl0509.34062MR0693110
  56. 56. J. Dubois, P. Morales, Structure de l’ensemble des solutions du probléme dee Cauchy sous le conditions de Carathéodory, Ann. Sci. Math. Quebec 7 (1983), 5–27. (1983) MR0699983
  57. 57. G. Dylawerski, L. Górniewicz, A remark on the Krasnosielskii translation operator, Serdica Math. J. 9 (1983), 102–107. (1983) MR0725816
  58. 58. Z. Dzedzej, B. Gelman, Dimension of the solution set for differential inclusions, Demonstration Math. 26 (1993), 149–158. (1993) Zbl0783.34008MR1226553
  59. 59. V. V. Filippov, The topological structure of spaces of solutions of ordinary differential equations, Uspekhi Mat. Nauk 48 (1993), 103–154. (in Russian) (1993) MR1227948
  60. 60. G. Gabor, On the acyclicity of fixed point sets of multivalued maps, TMNA 14 (1999), 327–343. (1999) MR1766183
  61. 61. B. D. Gelman, On the structure of the set of solutions for inclusions with multivalued operators, in Global Analysis - Studies and Applications III, (ed. Yu. G. Borisovich and Yu. E. Glikhlikh), Lecture Notes in Math. vol. 1334, pp. 60–78, Springer, Berlin, 1988. (1988) MR0964695
  62. 62. B. D. Gelman, Topological properties of fixed point sets of multivalued maps, Mat. Sb. 188, No. 12 (1997), 33–56. (1997) MR1607367
  63. 63. A. N. Godunov, A counter example to Peano’s Theorem in an infinite dimensional Hilbert space, Vestnik Mosk. Gos. Univ., Ser. Mat. Mek. 5 (1972), 31–34. (1972) 
  64. 64. A. N. Godunov, Peano’s Theorem in an infinite dimensional Hilbert space is false even in a weakened form, Math. Notes 15 (1974), 273–279. (1974) MR0352640
  65. 65. K. Goebel, W. Rzymowski, An existence theorem for the equation x = f (t, x) in Banach spaces, Bull. Acad. Polon. Math. 18 (1970), 367–370. (1970) MR0269957
  66. 66. L. Górniewicz, Topological approach to differential inclusions, in: A. Granas and H. Frigon eds., NATO ASI Series C 472, Kluwer, 1975. (1975) 
  67. 67. L. Górniewicz, Homological methods in fixed point theory of multivalued mappings, Dissertationes Math. 129 (1976), 1–71. (1976) 
  68. 68. L. Górniewicz, On the solution sets of differential inclusions, J. Math. Anal. Appl. 113 (1986), 235–244. (1986) MR0826673
  69. 69. L. Górniewicz, Topological Fixed Point Theory of Multivalued Mappings, Kluwer, Dordrecht, 1999. (1999) MR1748378
  70. 70. L. Górniewicz, S. A. Marano, On the fixed point set of multivalued contractions, Rend. Circ. Mat. Palermo 40 (1996), 139–145. (1996) MR1407087
  71. 71. L. Górniewicz S. A. Marano, M. Slosarski, Fixed points of contractive multivalued maps, Proc. Amer. Math. Soc. 124 (1996), 2675–2683. (1996) MR1317038
  72. 72. L. Górniewicz P. Nistri, V. V. Obukovskii, Differential inclusions on proximate retracts of Hilbert spaces, Int. J. Nonlinear Diff. Equs. TMA 3 (1980), 13–26. (1980) 
  73. 73. L. Górniewicz, T. Pruszko, On the set of solutions of the Darboux problem for some hyperbolic equations, Bull. Acad. Polon. Math. 28, No. 5-6 (1980), 279–286. (1980) MR0620202
  74. 74. L. Górniewicz, M. Slosarski, Topological and differential inclusions, Bull. Austr. Math. Soc. 45 (1992), 177–193. (1992) MR1155476
  75. 75. G. Haddad, Topological properties of the sets of solutions for functional differential inclusions, Nonlinear Anal. TMA 5, No. 12 (1981), 1349-1366. (1981) Zbl0496.34041MR0646220
  76. 76. A. J. Heunis, Continuous dependence of the solutions of an ordinary differential equation, J. Diff. Eqns. 54 (1984), 121–138. (1984) Zbl0547.34007MR0757289
  77. 77. C. J. Himmelberg, F. S. Van Vleck, On the topological triviality of solution sets, Rocky Mountain J. Math. 10 (1980), 247–252. (1980) Zbl0456.34004MR0573874
  78. 78. C. J. Himmelberg, F. S. Van Vleck, A note on the solution sets of differential inclusions, Rocky Mountain J. Math. 12 (1982), 621–625. (1982) Zbl0531.34007MR0683856
  79. 79. T. S. Hu, N. S. Papageorgiou, On the topological regularity of the solution set of differential inclusions with constrains, J. Diff. Equat. 107 (1994), 280–289. (1994) MR1264523
  80. 80. M. Hukuhara, Sur les systémes des équations differentielles ordinaires, Japan J. Math. 5 (1928), 345–350. (1928) 
  81. 81. D. M. Hyman, On decreasing sequence of compact absolute retracts, Fund. Math. 64 (1959), 91–97. (1959) MR0253303
  82. 82. J. Jarník, J. Kurzweil, On conditions on right hand sides of differential relations, Časopis pro Pěst. Mat. 102 (1977), 334–349. (1977) MR0466702
  83. 83. M. I. Kamenskii, On the Peano Theorem in infinite dimensional spaces, Mat. Zametki 11, No. 5 (1972), 569–576. (1972) MR0304808
  84. 84. M. I. Kamenskii, V. V. Obukovskii, Condensing multioperators and periodic solutions of parabolic functional - differential inclusions in Banach spaces, Nonlinear Anal. TMA 20 (1991), 781–792. (1991) MR1214743
  85. 85. R. Kannan J. J. Nieto, M. B. Ray, A class of nonlinear boundary value problems without Landesman–Lazer condition, J. Math. Anal. Appl. 105 (1985), 1–11. (1985) MR0773569
  86. 86. A. Kari, On Peano’s Theorem in locally convex spaces, Studia Math. 73, No. 3 (1982), 213–223. (1982) Zbl0507.34047MR0675425
  87. 87. W. G. Kelley, A Kneser theorem for Volterra integral equations, Proc. Amer. Math. Soc. 40, No. 1 (1973), 183–190. (1973) Zbl0244.45003MR0316983
  88. 88. M. Kisielewicz, Multivalued differential equations in separable Banach spaces, J. Optim. Th. Appl. 37, No. 2 (1982), 231–249. (1982) Zbl0458.34008MR0663523
  89. 89. H. Kneser, Über die Lösungen eine system gewöhnlicher differential Gleichungen das der lipschitzchen Bedingung nicht genügt, S. B. Preuss. Akad. Wiss. Phys. Math. Kl. 4 (1923), 171–174. (1923) 
  90. 90. A. Kolmogorov, S. Fomin, Elements of the Theory of Functions and Functional Analysis, Graylock, New York, 1957. (1957) MR0085462
  91. 91. M. A. Krasnoselskii P. P. Zabreiko, Geometrical Methods of Nonlinear Analysis, Springer-Verlag, Heidelberg 1984. (1984) MR0736839
  92. 92. W. Kryszewski, Topological and approximation methods in the degree theory of set-valued maps, Dissertationes Math. 336 (1994), 1–102. (1994) MR1307460
  93. 93. P. Krbec, J. Kurzweil, Kneser’s theorem for multivalued, differential delay equations, Časopis pro Pěst. Mat. 104, No. 1 (1979), 1–8. (1979) Zbl0405.34059MR0523570
  94. 94. Z. Kubíček, A generalization of N. Aronszajn’s theorem on connectedness of the fixed point set of a compact mapping, Czech. Math. J. 37, No. 112 (1987), 415–423. (1987) MR0904769
  95. 95. Z. Kubíček, On the structure of the fixed point sets of some compact maps in the Fréchet space, Math. Bohemica 118 (1993), 343–358. (1993) 
  96. 96. Z. Kubíček, On the structure of the solution set of a functional differential system on an unbounded interval, Arch. Math. (Brno) 35 (1999), 215–228. (1999) MR1725839
  97. 97. I. Kubiaczyk, Structure of the sets of weak solutions of an ordinary differential equation in a Banach space, Ann. Polon. Math. 44, No. 1 (1980), 67–72. (1980) MR0764805
  98. 98. I. Kubiaczyk, Kneser’s Theorem for differential equations in Banach spaces, J. Diff. Equs. 45, No. 2 (1982), 139–147. (1982) MR0665991
  99. 99. I. Kubiaczyk, S. Szufla, Kneser’s Theorem for weak solutions of ordinary differential equations in Banach spaces, Publ. Inst. Math. (Beograd) (NS) 32, No. 46 (1982), 99–103. (1982) MR0710975
  100. 100. A. Lasota, J. A. Yorke, The generic property of existence of solutions of differential equations in Banach spaces, J. Diff. Equs. 13 (1973), 1–12. (1973) MR0335994
  101. 101. J. M. Lasry, R. Robert, Analyse Non Linéaire Multivoque, Cahiers de Math. de la Decision, Paris, No. 7611, 1977. (1977) 
  102. 102. J. M. Lasry, R. Robert, Acyclicité de l’ensemble des solutions de certaines équations fonctionnelles, C. R. Acad. Sci. Paris 282, No. 22A (1976), 1283–1286 MR0436195
  103. 103. T. C. Lim, On fixed point stability for set valued contractive mappings with applications to generalized differential equations, J. Math. Anal. Appl. 110 (1985), 436–441. (1985) MR0805266
  104. 104. T. Ma, Topological degrees of set-valued compact fields in locally convex spaces, Dissertationes Math. XCII (1972), 1–47. (1972) MR0309103
  105. 105. S. Marano, V. Staicu, On the set of solutions to a class of nonconvex nonclosed differential inclusions, Acta Math. Hungarica 76 (1997), 287–301. (1997) Zbl0907.34010MR1459237
  106. 106. A. Margheri, P. Zecca, A note on the topological structure of solution sets of Sturm–Liouville problems in Banach spaces, Atti Accad. Naz. Lincei, Rend. Cl. Sci. Fis. Math. Nat., (to appear). 
  107. 107. H. Monch, Boundary value problems for nonlinear ordinary differential equations of second order in Banach spaces, Nonlinear Anal. TMA 4 (1980), 985–999. (1980) MR0586861
  108. 108. H. Monch, G. von Harten, On the Cauchy problem for ordinary differential equations in Banach spaces, Arch. Math. 39 (1982), 153–160. (1982) MR0675655
  109. 109. A. M. Muhsinov, On differential inclusions in a Banach space, Soviet Math. Dokl. 15 (1974), 1122–1125. (1974) 
  110. 110. J. J. Nieto, Periodic solutions of nonlinear parabolic equations, J. Diff. Equs. 60, No. 1 (1985), 90–102. (1985) Zbl0537.35049MR0808259
  111. 111. J. J. Nieto, Nonuniqueness of solutions of semilinear elliptic equations at resonance, Boll. Un. Mat. Ital. 6, 5-A, No. 2, (1986), 205–210. (1986) MR0850289
  112. 112. J. J. Nieto, Structure of the solution set for semilinear elliptic equations, Colloq. Math. Soc. Janos Bolyai, 47 (1987), 799–807. (1987) Zbl0654.35035MR0890578
  113. 113. J. J. Nieto, Hukuhara–Kneser property for a nonlinear Dirichlet problem, J. Math. Anal. Appl. 128 (1987), 57–63. (1987) Zbl0648.34019MR0915966
  114. 114. J. J. Nieto, Decreasing sequences of compact absolute retracts and nonlinear problems, Boll. Un. Mat. Ital. 2-B, No. 7 (1988), 497–507. (1988) Zbl0667.47035MR0963315
  115. 115. J. J. Nieto, Aronszajn’s theorem for some nonlinear Dirichlet problem, Proc. Edinburg Math. Soc. 31 (1988), 345–351. (1988) MR0969064
  116. 116. J. J. Nieto, Nonlinear second order periodic value problems with Carathéodory functions, Appl. Anal. 34 (1989), 111–128. (1989) 
  117. 117. J. J. Nieto, Periodic Neumann boundary value problem for nonlinear parabolic equations and application to an elliptic equation, Ann. Polon. Math. 54, No. 2 (1991), 111–116. (1991) Zbl0737.35032MR1104733
  118. 118. J. J. Nieto, L. Sanchez, Periodic boundary value problems for some Duffing equations, Diff. and Int. Equs. 1, No. 4 (1988), 399–408. (1988) MR0945817
  119. 119. V. V. Obukhovskii, Semilinear functional differential inclusions in a Banach space and controlled parabolic systems, Soviet J. Automat. Inform. Sci. 24, No. 3 (1991), 71–79. (1991) MR1173399
  120. 120. C. Olech, On the existence and uniqueness of solutions of an ordinary differential equation in the case of a Banach space, Bull. Acad. Polon. Math. 8 (1969), 667–673. (1969) MR0147733
  121. 121. N. S. Papageorgiou, Kneser’s Theorem for differential equations in Banach spaces, Bull. Austral. Math. Soc. 33, No. 3 (1986), 419–434. (1986) MR0837488
  122. 122. N. S. Papageorgiou, On the solution set of differential inclusions in a Banach space, Appl. Anal. 25, No. 4 (1987), 319–329. (1987) MR0912190
  123. 123. N. S. Papageorgiou, A property of the solution set of differential inclusions in Banach spaces with a Carathéodory orientor field, Appl. Anal. 27, No. 4 (1988), 279–287. (1988) MR0936472
  124. 124. N. S. Papageorgiou, On the solution set of differential inclusions with state constraints, Appl. Anal. 31 (1989), 279–289. (1989) Zbl0698.34015MR1017517
  125. 125. N. S. Papageorgiou, Convexity of the orientor field and the solution set of a class of evolution inclusions, Math. Slovaca 43 (1993), no. 5, 593–615. (1993) MR1273713
  126. 126. N. S. Papageorgiou, On the properties of the solution set of nonconvex evolution inclusions of the subdifferential type, Comment. Math. Univ. Carolin. 34 (1993), no. 4, 673–687. (1993) Zbl0792.34014MR1263796
  127. 127. N. S. Papageorgiou, A property of the solution set of nonlinear evolution inclusions with state constraints, Math. Japon. 38 (1993), no. 3, 559–569. (1993) Zbl0777.34043MR1221027
  128. 128. N. S. Papageorgiou, On the solution set of nonlinear evolution inclusions depending on a parameter, Publ. Math. Debrecen 44 (1994), no. 1–2, 31–49. (1994) Zbl0824.34018MR1269967
  129. 129. N. S. Papageorgiou, On the solution set of nonconvex subdifferential evolution inclusions, Czechoslovak Math. J. 44 (1994), no. 3, 481–500. (1994) Zbl0868.34010MR1288166
  130. 130. N. S. Papageorgiou, On the topological regularity of the solution set of differential inclusions with constraints, J. Diff. Equs. 107 (1994), no. 2, 280–289. (1994) Zbl0796.34017MR1264523
  131. 131. N. S. Papageorgiou, On the topological properties of the solution set of evolution inclusions involving time-dependent subdifferential operators, Boll. Un. Mat. Ital. 9 (1995), no. 2, 359–374. (1995) Zbl0845.34066MR1333967
  132. 132. N. S. Papageorgiou, On the properties of the solution set of semilinear evolution inclusions, Nonlinear Anal. TMA 24 (1995), no. 12, 1683–1712. (1995) Zbl0831.34014MR1330643
  133. 133. N. S. Papageorgiou, Topological properties of the solution set of integrodifferential inclusions, Comment. Math. Univ. Carolin. 36 (1995), no. 3, 429–442. (1995) Zbl0836.34019MR1364483
  134. 134. N. S. Papageorgiou, On the solution set of nonlinear integrodifferential inclusions in R N , , Math. Japon. 46 (1997), no. 1, 117–127. (1997) MR1466124
  135. 135. N. S. Papageorgiou, Topological properties of the solution set of a class of nonlinear evolutions inclusions, Czechoslovak Math. J. 47 (1997), no. 3, 409–424. (1997) MR1461421
  136. 136. N. S. Papageorgiou, On the structure of the solution set of evolution inclusions with time-dependent subdifferentials, Rend. Sem. Mat. Univ. Padova 97 (1997), 163–186. (1997) Zbl0893.34060MR1476169
  137. 137. N. S. Papageorgiou, F. Papalini, On the structure of the solution set of evolution inclusions with time-dependent subdifferentials, Acta Math. Univ. Comenian. (N.S.) 65 (1996), no. 1, 33–51. (1996) Zbl0865.34049MR1422293
  138. 138. N. S. Papageorgiou N. Shahzad, Properties of the solution set of nonlinear evolution inclusions, Appl. Math. Optim. 36 (1997), no. 1, 1–20. (1997) MR1446789
  139. 139. G. Peano, Sull’integrabilité delle equazioni differenziali del primo ordine, Atti della Reale Accad. dell Scienze di Torino 21 (1886), 677–685. 
  140. 140. G. Peano, Démonstration de l’integrabilite des équations differentielles ordinaires, Mat. Annalen 37 (1890), 182–238. 
  141. 141. W. V. Petryshyn, Note on the structure of fixed point sets of 1-set–contractions, Proc. Amer. Math. Soc. 31 (1972), 189–194. (1972) MR0285944
  142. 142. G. Pianigiani, Existence of solutions of ordinary differential equations in Banach spaces, Bull. Acad. Polon. Math. 23 (1975), 853–857. (1975) MR0393710
  143. 143. S. Plaskacz, On the solution sets for differential inclusions, Boll. Un. Mat. Ital. 7, 6-A (1992), 387–394. (1992) Zbl0774.34012MR1196133
  144. 144. J. Saint Raymond, Multivalued contractions, Set-Valued Analysis 2, 4 (1994), 559–571. (1994) Zbl0820.47065MR1308485
  145. 145. B. Ricceri, Une propriété topologique de l’ensemble des points fixes d’une contraction multivoque à valeurs convexes, Atti Accad. Naz. Lincei Rend. Cl. Sci. Fis. Mat. Natur. (8) 81 (1987), 283–286. (1987) MR0999821
  146. 146. B. N. Sadovskii, On measures of noncompactness and contracting operators, in Problems in the Mathematical Analysis of Complex Systems, second edition, Voronezh (1968), 89–119. (in Russian) (1968) MR0301582
  147. 147. B. N. Sadovskii, Limit-compact and condensing operators, Uspekh. Mat. Nauk 27 (1972), 1–146. (in Russian) (1972) MR0428132
  148. 148. K. Schmitt, P. Volkmann, Boundary value problems for second order differential equations in convex subsets in a Banach space, Trans. Amer. Math. Soc. 218 (1976), 397–405. (1976) MR0397110
  149. 149. V. Šeda, Fredholm mappings and the generalized boundary value problem, Diff. Integral Equs. 8 (1995), 19–40. (1995) MR1296108
  150. 150. V. Šeda, Generalized boundary value problems and Fredholm mappings, Nonlinear Anal. TMA 30 (1997), 1607-1616. (1997) MR1490083
  151. 151. V. Šeda, Rδ -set of solutions to a boundary value problem, TMNA, (to appear). 
  152. 152. J. S. Shin, Kneser type theorems for functional differential equations in a Banach space, Funk. Ekvacioj 35 (1992), 451–466. (1992) Zbl0785.34049MR1199467
  153. 153. Z. Song, Existence of generalized solutions for ordinary differential equations in Banach spaces, 3. Math. Anal. Appl. 128 (1987), 405–412. (1987) Zbl0666.34068MR0917374
  154. 154. W. Sosulski, Compactness and upper semi continuity of solution set of functional differential equations of hyperbolic type, Comment. Mat. Prace. Mat. 25, No. 2 (1985), 359–362. (1985) MR0844652
  155. 155. V. Staicu, Qualitative propeties of solutions sets to Lipschitzian differential inclusions, World Sci. Publ. (Singapore 1993), 910–914. (1993) MR1242362
  156. 156. S. Szufla, Some remarks on ordinary differential equations in Banach spaces, Bull. Acad. Polon. Math. 16 (1968), 795–800. (1968) MR0239238
  157. 157. S. Szufla, Measure of noncompactness and ordinary differential equations in Banach spaces, Bull Acad. Polon. Sci. 19 (1971), 831–835. (1971) MR0303043
  158. 158. S. Szufla, Structure of the solutions set of ordinary differential equations in a Banach space, Bull. Acad. Polon. Sci. 21, No. 2 (1973), 141–144. (1973) MR0333390
  159. 159. S. Szufla, Solutions sets of nonlinear equations, Bull. Acad. Polon. Sci. 21, No. 21 (1973), 971–976. (1973) MR0344959
  160. 160. S. Szufla, Some properties of the solutions set of ordinary differential equations, Bull. Acad. Polon. Sci. 22, No. 7 (1974), 675–678. (1974) MR0355245
  161. 161. S. Szufla, On the structure of solutions sets of differential and integral equations in Banach spaces, Ann. Polon. Math. 34 (1977), 165–177. (1977) MR0463608
  162. 162. S. Szufla, On the equation x = f (t, x) in Banach spaces, Bull. Acad. Polon. Sci. 26, No. 5 (1978), 401–406. (1978) MR0499578
  163. 163. S. Szufla, Kneser’s theorem for weak solutions of ordinary differential equations in reflexive Banach spaces, Bull. Acad. Polon. Sci. 26, No. 5 (1978), 407–413. (1978) MR0492684
  164. 164. S. Szufla, Sets of fixed points nonlinear mappings in function spaces, Funkcial. Ekvac. 22 (1979), 121–126. (1979) MR0551256
  165. 165. S. Szufla, On the existence of solutions of differential equations in Banach spaces, Bull. Acad. Polon. Sci. 30, No. 11–12 (1982), 507–515. (1982) MR0718727
  166. 166. S. Szufla, On the equation x = f (t, x) in locally convex spaces, Math. Nachr. 118 (1984), 179–185. (1984) MR0773619
  167. 167. S. Szufla, Existence theorems for solutions of integral equations in Banach spaces, Proc. Conf. Diff. Equs. and Optimal Control, Zielona Góra (1985), 101–107. (1985) MR0937926
  168. 168. S. Szufla, On the application of measure of noncompactness to differential and integral equations in a Banach space, Fasc. Math. 18 (1988), 5–11. (1988) MR0988763
  169. 169. P. Talaga, The Hukuhara–Kneser property for parabolic systems with nonlinear boundary conditions, J. Math. Anal. 79 (1981), 461–488. (1981) Zbl0457.35042MR0606494
  170. 170. P. Talaga, The Hukuhara–Kneser property for quasilinear parabolic equations, Non-linear Anal. TMA 12, No. 3 (1988), 231–245. (1988) Zbl0678.35052MR0928558
  171. 171. A. A. Tolstonogov, On differential inclusions in a Banach space and continuous selectors, Dokl. Akad. Nauk SSSR 244 (1979), 1088–1092. (1979) MR0522051
  172. 172. A. A. Tolstonogov, On properties of solutions of differential inclusions in a Banach space, Dokl. Akad. Nauk SSSR 248 (1979), 42–46. (1979) Zbl0441.34045MR0549368
  173. 173. A. A. Tolstonogov, On the structure of the solution set for differential inclusions in a Banach space, Math. Sbornik, 46 (1983), 1–15. (in Russian) (1983) Zbl0564.34065
  174. 174. G. Vidossich, On Peano-phenomenon, Bull. Un. Math. Ital. 3 (1970), 33–42. (1970) Zbl0179.47101MR0271793
  175. 175. G. Vidossich, On the structure of the set of solutions of nonlinear equations, J. Math. Anal. Appl. 34 (1971), 602–617. (1971) MR0283645
  176. 176. G. Vidossich, A fixed point theorem for function spaces, J. Math. Anal. Appl. 36 (1971), 581–587. (1971) MR0285945
  177. 177. G. Vidossich, Existence, uniqueness and approximation of fixed points as a generic property, Bol. Soc. Brasil. Mat. 5 (1974), 17–29. (1974) MR0397710
  178. 178. G. Vidossich, Two remarks on global solutions of ordinary differential equations in the real line, Proc. Amer. Math. Soc. 55 (1976), 111–115. (1976) Zbl0339.34004MR0470291
  179. 179. T. Wazewski, Sur l’existence et l’unicité des integrales des équations différentielles ordinaires au cas de l’espace de Banach, Bull. Acad. Polon. Math. 8 (1960), 301–305. (1960) Zbl0093.08405MR0131038
  180. 180. J. A. Yorke, Spaces of solutions, Lect. Notes Op. Res. Math. Econ. vol. 12, Springer-Verlag, (1969), 383–403. (1969) Zbl0188.15502MR0361294
  181. 181. J. A. Yorke, A continuous differential equation in a Hilbert space without existence, Funkc. Ekvac. 13 (1970), 19–21. (1970) MR0264196
  182. 182. R. R. Akhmerov, The structure of the solution set of a boundary value problem for a one-dimensional stationary equation of variable type, Chisl. Metody Mekh. Sploshn. Sredy, 15 (1984), 20–30. (1984) MR0813536
  183. 183. J. C. Alexander I. Massabò, J. Pejsachowicz, On the connectivity properties of the solution set of infinitely-parametrized families of vector fields, Boll. Un. Mat. Ital.A (6), 1 (1982), 309–312. (1982) MR0663297
  184. 184. A. Anguraj, K. Balachandran, On the solution sets of differential inclusion in Banach spaces, Tamkang J. Math., 23 (1992), 59–65. (1992) Zbl0760.34018MR1164448
  185. 185. G. Anichini, G. Conti, How to make use of the solution set to solve boundary value problems, Recent Trends in Nonlinear Analysis, Birkhäuser, Basel, 2000, 15–25. Zbl0949.34009MR1763129
  186. 186. G. Anichini G. Conti, P. Zecca, Using solution sets for solving boundary value problems for ordinary differential equations, Nonlinear Anal., 17 (1991), 465–472. (1991) MR1124119
  187. 187. M. T. Ashordiya, The structure of the solution set of the Cauchy problem for a system of generalized ordinary differential equations, Tbiliss. Gos. Univ. Inst. Prikl. Mat. Trudy, 17 (1986), 5–16. (1986) MR0853272
  188. 188. E. P. Avgerinos, N. S. Papageorgiou, On the solution set of maximal monotone differential inclusions in m , Math. Japon., 38 (1993), 91–110. (1993) MR1204188
  189. 189. E. P. Avgerinos, N. S. Papageorgiou, Topological properties of the solution set of integrodifferential inclusions, Comment. Math. Univ. Carolin., 36 (1995), 429–442. (1995) Zbl0836.34019MR1364483
  190. 190. G. Bartuzel, A. Fryszkowski, A topological property of the solution set to the Sturm–Liouville differential inclusions, Demonstratio Math., 28 (1995), 903–914. (1995) Zbl0886.47026MR1392243
  191. 191. J. W. Bebernes, Solution set properties for some nonlinear parabolic differential equations, Equadiff IV (Proc. Czechoslovak Conf. Differential Equations and their Applications, Prague, 1977) Springer, Berlin, 1979, 25–30. (1977) MR0535319
  192. 192. V. I. Blagodatskikh, P. Ndiĭ, Convexity of the solution set of a differential inclusion, Vestnik Moskov. Univ. Ser. XV Vychisl. Mat. Kibernet., (1998), 21–22. (1998) MR1657954
  193. 193. F. S. De Blasi G. Pianigiani, V. Staicu, On the solution sets of some nonconvex hyperbolic differential inclusions, Czechoslovak Math. J., 45 (1995), 107–116. (1995) MR1314533
  194. 194. D. Bugajewska, On implicit Darboux problem in Banach spaces, Bull. Austral. Math. Soc., 56 (1997), 149–156. (1997) MR1464057
  195. 195. D. Bugajewska, On the equation of nth order and the Denjoy integral, Nonlinear Anal., 34 (1998), 1111–1115. (1998) MR1637221
  196. 196. D. Bugajewska, A note on the global solutions of the Cauchy problem in Banach spaces, Acta Math. Hung., 88 (2000), 341–346. MR1789046
  197. 197. D. Bugajewska, On the structure of solution sets of differential equations in Banach spaces, Math. Slovaca, 50 (2000), 463–471. MR1857301
  198. 198. D. Bugajewska, D. Bugajewski, On the equation x a p ( n ) = f ( t , x ) , Czech. Math. Journal, 46 (1996), 325–330. (1996) MR1388620
  199. 199. D. Bugajewska, D. Bugajewski, On nonlinear equations in Banach spaces and axiomatic measures of noncompactness, Funct. Differ. Equ., 5 (1998), 57–68. (1998) Zbl1049.45013MR1681184
  200. 200. D. Bugajewski, On the structure of the L p 1 , p 2 -solution sets of Volterra integral equations in Banach spaces, Comment. Math. Prace Mat., 30 (1991), 253–260. (1991) Zbl0745.45004MR1122694
  201. 201. D. Bugajewski, On differential and integral equations in locally convex spaces, Demonstr. Math., 28 (1995), 961–966. (1995) Zbl0855.34071MR1392249
  202. 202. D. Bugajewski, On the structure of solution sets of differential and integral equations, and the Perron integral, Proceedings of the Prague Mathematical Conference 1996, Icaris, Prague, 1997, 47–51. (1996) Zbl0966.34041MR1703455
  203. 203. D. Bugajewski, S. Szufla, Kneser’s theorem for weak solutions of the Darboux problem in Banach spaces, Nonlinear Anal., 20 (1993), 169–173. (1993) MR1200387
  204. 204. D. Bugajewski, S. Szufla, On the Aronszajn property for differential equations and the Denjoy integral, Comment. Math., 35 (1995), 61–69. (1995) MR1384852
  205. 205. T. Cardinali, On the structure of the solution set of evolution inclusions with Fréchet subdifferentials, J. Appl. Math. Stochastic Anal., 13 (2000), 51–72. Zbl0966.34052MR1751029
  206. 206. T. Cardinali A. Fiacca, N. S. Papageorgiou, On the solution set of nonlinear integrodifferential inclusions in 𝐑 N , Math. Japon., 46 (1997), 117–127. (1997) MR1466124
  207. 207. C. Castaing, M. Marques, Topological properties of solution sets for sweeping processes with delay, Portugal. Math., 54 (1997), 485–507. (1997) Zbl0895.34053MR1489988
  208. 208. A. Cellina, A. Ornelas, Convexity and the closure of the solution set to differential inclusions, Boll. Un. Mat. Ital. B (7), 4 (1990), 255–263. (1990) Zbl0719.34031MR1061215
  209. 209. R. M. Colombo A. Fryszkowski T. Rzezuchowski, V. Staicu, Continuous selections of solution sets of Lipschitzean differential inclusions, Funkcial. Ekvac., 34 (1991), 321–330. (1991) MR1130468
  210. 210. A. Constantin, On the stability of solution sets for operational differential inclusions, An. Univ. Timişoara Ser. Ştiinţ. Mat., 29 (1991), 115–124. (1991) Zbl0799.34016MR1263091
  211. 211. G. Conti V. Obukhovskiĭ, P. Zecca, On the topological structure of the solution set for a semilinear functional-differential inclusion in a Banach space, Topology in Nonlinear Analysis, Polish Acad. Sci., Warsaw, 1996, 159–169. (1996) MR1448435
  212. 212. K. Deimling, On solution sets of multivalued differential equations, Appl. Anal., 30 (1988), 129–135. (1988) Zbl0635.34014MR0967566
  213. 213. K. Deimling, Bounds for solution sets of multivalued ODEs, Recent Trends in Differential Equations, World Sci. Publishing, River Edge, NJ, 1992, 127–134. (1992) Zbl0832.34009MR1180107
  214. 214. P. Diamond, P. Watson, Regularity of solution sets for differential inclusions quasi-concave in a parameter, Appl. Math. Lett., 13 (2000), 31–35. Zbl0944.34008MR1750963
  215. 215. Y. H. Du, The structure of the solution set of a class of nonlinear eigenvalue problems, J. Math. Anal. Appl., 170 (1992), 567–580. (1992) Zbl0784.35080MR1188572
  216. 216. V. V. Filippov, On the acyclicity of solution sets of ordinary differential equations, Dokl. Akad. Nauk, 352 (1997), 28–31. (1997) MR1445851
  217. 217. A. Gavioli, On the solution set of the nonconvex sweeping process, Discuss. Math. Differential Incl., 19 (1999), 45–65. (1999) Zbl0954.34036MR1758498
  218. 218. V. V. Goncharov, Co-density and other properties of the solution set of differential inclusions with noncompact right-hand side, Discuss. Math. Differential Incl., 16 (1996), 103–120. (1996) Zbl0906.34012MR1646626
  219. 219. T. G. Hallam, J. W. Heidel, Structure of the solution set of some first order differential equations of comparison type, Trans. Amer. Math. Soc., 160 (1971), 501–512. (1971) MR0281995
  220. 220. G. Herzog, R. Lemmert, On the structure of the solution set of u = f ( t , u ) , u ( 0 ) = u ( 1 ) = 0 , Math. Nachr., 215 (2000), 103–105. Zbl0953.34054MR1768196
  221. 221. S. C. Hu V. Lakshmikantham, N. S. Papageorgiou, On the solution set of nonlinear evolution inclusions, Dynamic Systems Appl., 1 (1992), 71–82. (1992) Zbl0755.34057MR1154650
  222. 222. S. C. Hu V. Lakshmikantham, N. S. Papageorgiou, On the properties of the solution set of semilinear evolution inclusions, Nonlinear Anal., 24 (1995), 1683–1712. (1995) Zbl0831.34014MR1330643
  223. 223. A. G. Ibrahim, A. M. Gomaa, Topological properties of the solution sets of some differential inclusions, Pure Math. Appl., 10 (1999), 197–223. (1999) Zbl0977.34008MR1742594
  224. 224. G. Isac, G. X.-Z. Yuan, Essential components and connectedness of solution set for complementarity problems, Fixed Point Theory and Applications (Chinju, 1998), Nova Sci. Publ., Huntington, NY, 2000, 35–46. (1998) MR1761212
  225. 225. N. A. Izobov, The measure of the solution set of a linear system with the largest lower exponent, Differentsial’nye Uravneniya, 24 (1988), 2168–2170, 2207. (1988) MR0982150
  226. 226. M. Kamenskiĭ V. Obukhovskiĭ, P. Zecca, Method of the solution sets for a quasilinear functional-differential inclusion in a Banach space, Differential Equations Dynam. Systems, 4 (1996), 339–350. (1996) MR1655630
  227. 227. R. Kannan, D. O’Regan, A note on the solution set of integral inclusions, J. Integral Equations Appl., 12 (2000), 85–94. MR1760899
  228. 228. Z. Kánnai, P. Tallos, Stability of solution sets of differential inclusions, Acta Sci. Math. (Szeged), 61 (1995), 197–207. (1995) MR1377359
  229. 229. M. Kisielewicz, Continuous dependence of solution sets for generalized differential equations of neutral type, Atti Accad. Sci. Istit. Bologna Cl. Sci. Fis. Rend. (13), 8 (1980/81), 191–195. (1980) MR0695193
  230. 230. M. Kisielewicz, Compactness and upper semicontinuity of solution set of generalized differential equation in a separable Banach space, Demonstratio Math., 15 (1982), 753–761. (1982) MR0693538
  231. 231. M. Kisielewicz, Properties of solution set of stochastic inclusions, J. Appl. Math. Stochastic Anal., 6 (1993), 217–235. (1993) Zbl0796.93106MR1238600
  232. 232. M. Kisielewicz, Quasi-retractive representation of solution sets to stochastic inclusions, J. Appl. Math. Stochastic Anal., 10 (1997), 227–238. (1997) Zbl1043.34505MR1468117
  233. 233. B. S. Klebanov, V. V. Filippov, On the acyclicity of the solution set of the Cauchy problem for differential equations, Mat. Zametki, 62 (1997). (1997) MR1635158
  234. 234. P. Korman, The global solution set for a class of semilinear problems, J. Math. Anal. Appl., 226 (1998), 101–120. (1998) Zbl0911.34016MR1646477
  235. 235. A. V. Lakeev, S. I. Noskov, Description of the solution set of a linear equation with an interval-defined operator and right-hand side, Dokl. Akad. Nauk, 330 (1993), 430–433. (1993) MR1241970
  236. 236. V. P. Maksimov, On the parametrization of the solution set of a functional-differential equation, Funct. Differ. Equ., Perm. Politekh. Inst., Perm, (1988), 14–21. (in Russian) (1988) MR1066717
  237. 237. V. P. Maksimov, On the parametrization of the solution set of a functional-differential equation, Funct. Differ. Equ., 3 (1996), 371–378. (1996) Zbl0881.34076MR1459318
  238. 238. A. Margheri, P. Zecca, Solution sets and boundary value problems in Banach spaces, Topol. Methods Nonlinear Anal., 2 (1993), 179–188. (1993) Zbl0799.34069MR1245485
  239. 239. A. Margheri, P. Zecca, Solution sets of multivalued Sturm–Liouville problems in Banach spaces, Atti Accad. Naz. Lincei Cl. Sci. Fis. Mat. Natur. Rend. Lincei (9) Mat. Appl., 5 (1994), 161–166. (1994) Zbl0809.34026MR1292571
  240. 240. J. T. Markin, Stability of solution sets for generalized differential equations, J. Math. Anal. Appl., 46 (1974), 289–291. (1974) Zbl0293.34004MR0348218
  241. 241. M. Martelli, A. Vignoli, On the structure of the solution set of nonlinear equations, Nonlinear Anal., 7 (1983), 685–693. (1983) Zbl0519.47037MR0707077
  242. 242. I. Massabò, J. Pejsachowicz, On the connectivity properties of the solution set of parametrized families of compact vector fields, J. Funct. Anal., 59 (1984), 151–166. (1984) MR0766486
  243. 243. P. S. Milojević, On the index and the covering dimension of the solution set of semilinear equations, Nonlinear Functional Analysis and its Applications, Part 2 (Berkeley, Calif., 1983), Amer. Math. Soc., Providence, R.I., 1986, 183–205. (1983) MR0843608
  244. 244. P. S. Milojević, On the dimension and the index of the solution set of nonlinear equations, Trans. Amer. Math. Soc., 347 (1995), 835–856. (1995) MR1282894
  245. 245. O. Naselli, On the solution set of an equation of the type f ( t , Φ ( u ) ( t ) ) = 0 , Set-Valued Anal., 4 (1996), 399–405. (1996) Zbl0873.47041MR1422403
  246. 246. J. J. Nieto, On the structure of the solution set for first order differential equations, Appl. Math. Comput., 16 (1985), 177–187. (1985) MR0780794
  247. 247. J. J. Nieto, Structure of the solution set for semilinear elliptic equations, Differential Equations: Qualitative Theory, Vol. I, II (Szeged, 1984), North-Holland, Amsterdam, 1987, 799–807. (1984) MR0890578
  248. 248. W. Orlicz, S. Szufla, On the structure of L ϕ -solution sets of integral equations in Banach spaces, Studia Math., 77 (1984), 465–477. (1984) MR0751767
  249. 249. V. G. Osmolovskiĭ, The local structure of the solution set of a first-order nonlinear boundary value problem with constraints at points, Sibirsk. Mat. Zh., 27 (1986), 140–154, 206. (1986) MR0873718
  250. 250. N. S. Papageorgiou, On the solution set of evolution inclusions driven by time dependent subdifferentials, Math. Japon., 37 (1992), 1087–1099. (1992) Zbl0810.34059MR1196384
  251. 251. F. Papalini, Properties of the solution set of evolution inclusions, Nonlinear Anal., 26 (1996), 1279–1292. (1996) Zbl0849.34017MR1376103
  252. 252. M. P. Pera, A topological method for solving nonlinear equations in Banach spaces and some related global results on the structure of the solution sets, Rend. Sem. Mat. Univ. Politec. Torino, 41 (1983), 9–30. (1983) Zbl0568.47038MR0778859
  253. 253. E. S. Polovinkin, The properties of continuity and differentiation of solution sets of Lipschitzean differential inclusions Modeling, Estimation and Control of Systems with Uncertainty (Sopron, 1990), Birkhäuser, Boston, 1991, 349–360. (1990) MR1132282
  254. 254. B. Ricceri, On the topological dimension of the solution set of a class of nonlinear equations, C. R. Acad. Sci. Paris Sér. I Math., 325 (1997), 65–70. (1997) Zbl0884.47043MR1461399
  255. 255. L. E. Rybiński, A fixed point approach in the study of the solution sets of Lipschitzian functional-differential inclusions, J. Math. Anal. Appl., 160 (1991), 24–46. (1991) 
  256. 256. E. Serra M. Tarallo, S. Terracini, On the structure of the solution set of forced pendulum-type equations, J. Differ. Equ., 131 (1996), 189–208. (1996) MR1419011
  257. 257. A. Sghir, On the solution set of second-order delay differential inclusions in Banach spaces, Ann. Math. Blaise Pascal, 7 (2000), 65–79. Zbl0958.34048MR1769982
  258. 258. W. Song, The solution set of a differential inclusion on a closed set of a Banach space, Appl. Math., Warsaw, 23 (1995), 13–23. (1995) Zbl0831.34017MR1330055
  259. 259. W. Sosulski, Compactness and upper semicontinuity of solution set of functional-differential equations of hyperbolic type, Comment. Math. Prace Mat., 25 (1985), 359–362. (1985) Zbl0614.35061MR0844652
  260. 260. J. S. Spraker, D. C. Biles, A comparison of the Carathéodory and Filippov solution sets, J. Math. Anal. Appl., 198 (1996), 571–580. (198) MR1376281
  261. 261. V. Staicu, Continuous selections of solution sets to evolution equations, Proc. Amer. Math. Soc., 113 (1991), 403–413. (1991) Zbl0737.34011MR1076580
  262. 262. V. Staicu, On the solution sets to nonconvex differential inclusions of evolution type, Discrete Contin. Dynam. Systems, 2 (1998), 244–252. (1998) MR1722473
  263. 263. V. Staicu, H. Wu, Arcwise connectedness of solution sets to Lipschitzean differential inclusions, Boll. Un. Mat. Ital. A (7), 5 (1991), 253–256. (1991) Zbl0742.34018MR1120387
  264. 264. S. Szufla, Solutions sets of non-linear integral equations, Funkcial. Ekvac., 17 (1974), 67–71. (1974) MR0344827
  265. 265. S. Szufla, On the structure of solution sets of nonlinear equations, Differential Equations and Optimal Control (Kalsk, 1988), Higher College Engrg., Zielona Góra, 1989, 33–39. (1988) MR1067550
  266. 266. A. A. Tolstonogov, On the density and “being boundary” for the solution set of a differential inclusion in a Banach space, Dokl. Akad. Nauk SSSR, 261 (1981), 293–296. (1981) MR0638919
  267. 267. A. A. Tolstonogov, The solution set of a differential inclusion in a Banach space. II, Sibirsk. Mat. Zh., 25 (1984), 159–173. (1984) MR0732775
  268. 268. A. A. Tolstonogov, P. I. Chugunov, The solution set of a differential inclusion in a Banach space. I, Sibirsk. Mat. Zh., 24 (1983), 144–159. (1983) MR0731051
  269. 269. G. M. Troianiello, Structure of the solution set for a class of nonlinear parabolic problems, Nonlinear Parabolic Equations: Qualitative Properties of Solutions (Rome, 1985), Longman Sci. Tech., Harlow, 1987, 219–225. (1985) MR0901112
  270. 270. H. D. Tuan, On the continuous dependence on parameter of the solution set of differential inclusions, Z. Anal. Anwendungen, 11 (1992), 215–220. (1992) Zbl0783.34010MR1265929
  271. 271. Ya. I. Umanskiĭ, On a property of the solution set of differential inclusions in a Banach space, Differentsial’nye Uravneniya, 28 (1992), 1346–1351, 1468. (1992) MR1203847
  272. 272. V. Veliov, Convergence of the solution set of singularly perturbed differential inclusions, Proceedings of the Second World Congress of Nonlinear Analysts, Part 8 (Athens, 1996), Nonlinear Anal., 30 (1997), 5505–5514. (1996) MR1726055
  273. 273. Z. H. Wang, Existence of solutions for parabolic type evolution differential inclusions and the property of the solution set, Appl. Math. Mech., 20 (1999), 314–318. (1999) MR1704410
  274. 274. Z. K. Wei, On the existence of unbounded connected branches of solution sets of a class of semilinear operator equations, Bull. Soc. Math. Belg. Sér. B, 38 (1986), 14–30. (1986) MR0871300
  275. 275. Q. J. Zhu, On the solution set of differential inclusions in a Banach space, J. Differ. Equ., 93 (1991), 213–237. (1991) MR1125218
  276. 276. V. G. Zvyagin, The structure of the solution set of a nonlinear elliptic boundary value problem under fixed boundary conditions, Topological and Geometric Methods of Analysis, Voronezh. Gos. Univ., Voronezh, 1989, 152–158, 173. (in Russian) (1989) MR1047679

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.