A pseudocompact space with Kelley's property has a strictly positive measure

N. Kalamidas

Rendiconti del Seminario Matematico della Università di Padova (1997)

  • Volume: 97, page 17-21
  • ISSN: 0041-8994

How to cite

top

Kalamidas, N.. "A pseudocompact space with Kelley's property has a strictly positive measure." Rendiconti del Seminario Matematico della Università di Padova 97 (1997): 17-21. <http://eudml.org/doc/108421>.

@article{Kalamidas1997,
author = {Kalamidas, N.},
journal = {Rendiconti del Seminario Matematico della Università di Padova},
keywords = {Baire strictly positive measure},
language = {eng},
pages = {17-21},
publisher = {Seminario Matematico of the University of Padua},
title = {A pseudocompact space with Kelley's property has a strictly positive measure},
url = {http://eudml.org/doc/108421},
volume = {97},
year = {1997},
}

TY - JOUR
AU - Kalamidas, N.
TI - A pseudocompact space with Kelley's property has a strictly positive measure
JO - Rendiconti del Seminario Matematico della Università di Padova
PY - 1997
PB - Seminario Matematico of the University of Padua
VL - 97
SP - 17
EP - 21
LA - eng
KW - Baire strictly positive measure
UR - http://eudml.org/doc/108421
ER -

References

top
  1. [1] K. Alster - R. POL, On function spaces of compact subspaces of ∑-products of the real line, Fund. Math., 107 (1980), pp. 135-143. Zbl0432.54013
  2. [2] A.V. Arkhangelskii, Function spaces in the topology of pointwise convergence and compact sets, Uspekhi Math. Nauk, 39:5 (1984), pp. 11-50. Zbl0568.54016MR764007
  3. [3] W.W. Comfort - S. Negrepontis, Chain Conditions in Topology, Cambridge Tracts in Math., Vol. 79, Cambridge University Press (1982). Zbl0488.54002MR665100
  4. [4] L. Gillman - M. JERISON, Rings of Continuous Functions, Springer-Verlag, New York, Heidelberg, Berlin (1976). Zbl0327.46040MR407579
  5. [5] D.H. Fremlin, An alternative form of a problem of A. Bellow, Note of October, 10 (1989). 
  6. [6] H.P. Rosenthal, On injective Banach spaces and the spaces L∞ (μ) for finite measures μ, Acta Math., 124 (1970), pp. 205-248. Zbl0207.42803
  7. [7] D.B. Shakhmatov, A pseudocompact Tychonoff space, all countable subsets of which are closed and C*-embedded, Topology and its Appl., 22 (1986), pp. 139-144. Zbl0586.54020MR836321
  8. [8] V.V. Tkačuk, Calibers of spaces of functions and the metrization problem for compact subsets of Cp(X), Vestnik Univ. Matematika, 43, No. 3 (1988), pp. 21-24. Zbl0653.54010MR966860
  9. [9] A. Ionesku Tulcea, On pointwise convergence, Compactness and Equicontinuity II, Advances in Math., 12 (1974), pp. 171-177. Zbl0301.46032MR405103

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.