# A pseudocompact space with Kelley's property has a strictly positive measure

Rendiconti del Seminario Matematico della Università di Padova (1997)

- Volume: 97, page 17-21
- ISSN: 0041-8994

## Access Full Article

top## How to cite

topKalamidas, N.. "A pseudocompact space with Kelley's property has a strictly positive measure." Rendiconti del Seminario Matematico della Università di Padova 97 (1997): 17-21. <http://eudml.org/doc/108421>.

@article{Kalamidas1997,

author = {Kalamidas, N.},

journal = {Rendiconti del Seminario Matematico della Università di Padova},

keywords = {Baire strictly positive measure},

language = {eng},

pages = {17-21},

publisher = {Seminario Matematico of the University of Padua},

title = {A pseudocompact space with Kelley's property has a strictly positive measure},

url = {http://eudml.org/doc/108421},

volume = {97},

year = {1997},

}

TY - JOUR

AU - Kalamidas, N.

TI - A pseudocompact space with Kelley's property has a strictly positive measure

JO - Rendiconti del Seminario Matematico della Università di Padova

PY - 1997

PB - Seminario Matematico of the University of Padua

VL - 97

SP - 17

EP - 21

LA - eng

KW - Baire strictly positive measure

UR - http://eudml.org/doc/108421

ER -

## References

top- [1] K. Alster - R. POL, On function spaces of compact subspaces of ∑-products of the real line, Fund. Math., 107 (1980), pp. 135-143. Zbl0432.54013
- [2] A.V. Arkhangelskii, Function spaces in the topology of pointwise convergence and compact sets, Uspekhi Math. Nauk, 39:5 (1984), pp. 11-50. Zbl0568.54016MR764007
- [3] W.W. Comfort - S. Negrepontis, Chain Conditions in Topology, Cambridge Tracts in Math., Vol. 79, Cambridge University Press (1982). Zbl0488.54002MR665100
- [4] L. Gillman - M. JERISON, Rings of Continuous Functions, Springer-Verlag, New York, Heidelberg, Berlin (1976). Zbl0327.46040MR407579
- [5] D.H. Fremlin, An alternative form of a problem of A. Bellow, Note of October, 10 (1989).
- [6] H.P. Rosenthal, On injective Banach spaces and the spaces L∞ (μ) for finite measures μ, Acta Math., 124 (1970), pp. 205-248. Zbl0207.42803
- [7] D.B. Shakhmatov, A pseudocompact Tychonoff space, all countable subsets of which are closed and C*-embedded, Topology and its Appl., 22 (1986), pp. 139-144. Zbl0586.54020MR836321
- [8] V.V. Tkačuk, Calibers of spaces of functions and the metrization problem for compact subsets of Cp(X), Vestnik Univ. Matematika, 43, No. 3 (1988), pp. 21-24. Zbl0653.54010MR966860
- [9] A. Ionesku Tulcea, On pointwise convergence, Compactness and Equicontinuity II, Advances in Math., 12 (1974), pp. 171-177. Zbl0301.46032MR405103

## NotesEmbed ?

topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.