A pseudocompact space with Kelley's property has a strictly positive measure

N. Kalamidas

Rendiconti del Seminario Matematico della Università di Padova (1997)

  • Volume: 97, page 17-21
  • ISSN: 0041-8994

How to cite

top

Kalamidas, N.. "A pseudocompact space with Kelley's property has a strictly positive measure." Rendiconti del Seminario Matematico della Università di Padova 97 (1997): 17-21. <http://eudml.org/doc/108421>.

@article{Kalamidas1997,
author = {Kalamidas, N.},
journal = {Rendiconti del Seminario Matematico della Università di Padova},
keywords = {Baire strictly positive measure},
language = {eng},
pages = {17-21},
publisher = {Seminario Matematico of the University of Padua},
title = {A pseudocompact space with Kelley's property has a strictly positive measure},
url = {http://eudml.org/doc/108421},
volume = {97},
year = {1997},
}

TY - JOUR
AU - Kalamidas, N.
TI - A pseudocompact space with Kelley's property has a strictly positive measure
JO - Rendiconti del Seminario Matematico della Università di Padova
PY - 1997
PB - Seminario Matematico of the University of Padua
VL - 97
SP - 17
EP - 21
LA - eng
KW - Baire strictly positive measure
UR - http://eudml.org/doc/108421
ER -

References

top
  1. [1] K. Alster - R. POL, On function spaces of compact subspaces of ∑-products of the real line, Fund. Math., 107 (1980), pp. 135-143. Zbl0432.54013
  2. [2] A.V. Arkhangelskii, Function spaces in the topology of pointwise convergence and compact sets, Uspekhi Math. Nauk, 39:5 (1984), pp. 11-50. Zbl0568.54016MR764007
  3. [3] W.W. Comfort - S. Negrepontis, Chain Conditions in Topology, Cambridge Tracts in Math., Vol. 79, Cambridge University Press (1982). Zbl0488.54002MR665100
  4. [4] L. Gillman - M. JERISON, Rings of Continuous Functions, Springer-Verlag, New York, Heidelberg, Berlin (1976). Zbl0327.46040MR407579
  5. [5] D.H. Fremlin, An alternative form of a problem of A. Bellow, Note of October, 10 (1989). 
  6. [6] H.P. Rosenthal, On injective Banach spaces and the spaces L∞ (μ) for finite measures μ, Acta Math., 124 (1970), pp. 205-248. Zbl0207.42803
  7. [7] D.B. Shakhmatov, A pseudocompact Tychonoff space, all countable subsets of which are closed and C*-embedded, Topology and its Appl., 22 (1986), pp. 139-144. Zbl0586.54020MR836321
  8. [8] V.V. Tkačuk, Calibers of spaces of functions and the metrization problem for compact subsets of Cp(X), Vestnik Univ. Matematika, 43, No. 3 (1988), pp. 21-24. Zbl0653.54010MR966860
  9. [9] A. Ionesku Tulcea, On pointwise convergence, Compactness and Equicontinuity II, Advances in Math., 12 (1974), pp. 171-177. Zbl0301.46032MR405103

NotesEmbed ?

top

You must be logged in to post comments.