The spectrum of the transport operator with a potential term under the spatial periodicity condition

Minoru Tabata; Nobuoki Eshima

Rendiconti del Seminario Matematico della Università di Padova (1997)

  • Volume: 97, page 211-233
  • ISSN: 0041-8994

How to cite

top

Tabata, Minoru, and Eshima, Nobuoki. "The spectrum of the transport operator with a potential term under the spatial periodicity condition." Rendiconti del Seminario Matematico della Università di Padova 97 (1997): 211-233. <http://eudml.org/doc/108425>.

@article{Tabata1997,
author = {Tabata, Minoru, Eshima, Nobuoki},
journal = {Rendiconti del Seminario Matematico della Università di Padova},
keywords = {transport operator; spectrum; eigenvalues},
language = {eng},
pages = {211-233},
publisher = {Seminario Matematico of the University of Padua},
title = {The spectrum of the transport operator with a potential term under the spatial periodicity condition},
url = {http://eudml.org/doc/108425},
volume = {97},
year = {1997},
}

TY - JOUR
AU - Tabata, Minoru
AU - Eshima, Nobuoki
TI - The spectrum of the transport operator with a potential term under the spatial periodicity condition
JO - Rendiconti del Seminario Matematico della Università di Padova
PY - 1997
PB - Seminario Matematico of the University of Padua
VL - 97
SP - 211
EP - 233
LA - eng
KW - transport operator; spectrum; eigenvalues
UR - http://eudml.org/doc/108425
ER -

References

top
  1. [1] R. Beals - V. PROTOPOPESCU, Abstract time-dependent transport equations, J. Math. Anal. Appl., 121 (1987), pp. 370-405. Zbl0657.45007MR872231
  2. [2] G. Bartolomäus - J. Wilhelm, Existence and uniqueness of the solution of the nonstationary Boltzmann equation for the electrons in a collision dominated plasma by means of operator semigroup, Ann. Phys., 38 (1981), pp. 211-220. MR629561
  3. [3] N. Bellomo - M. LACHOWICZ - A. PALCZEWSKI - G. TOSCANI, On the initial value problem for the Boltzmann equation with a force term, Transp. TheoryStat. Phys., 18 (1989), pp. 87-102. Zbl0699.35237MR1006668
  4. [4] H.B. Drange, On the Boltzmann equation with external forces, SIAM J. Appl. Math., 34 (1978), pp. 577-592. Zbl0397.76068MR479244
  5. [5] H. Grad, Asymptotic theory of the Boltzmann equation, II, in Rarefied Gas Dynamics (J. A. LAURMANN Ed.), Academic Press, New York (1963), pp. 26-59. MR156656
  6. [6] C.P. Grünfeld, On the nonlinear Boltzmann equation with force term, Transp. Theory and Stat. Phys., 14 (1985), pp. 291-322. Zbl0609.76086MR798451
  7. [7] C.P. Grünfeld, Global solutions to a mixed problem for the Boltzmann equation with Lorentz force term, Transp. TheoryStat. Phys., 15 (1986), pp. 529-549. Zbl0631.76091MR861407
  8. [8] T. Kato, Perturbation Theory for Linear Operators, Springer, New York (1976). Zbl0148.12601MR407617
  9. [9] F.A. Molinet, Existence, uniqueness and properties of the solutions of the Boltzmann kinetic equation for a weakly ionized gas, I, J. Math. Phys., 18 (1977), pp. 984-996. Zbl0367.76068MR436842
  10. [10] A. Palczewski, A time dependent linear Boltzmann operator as the generator of a semigroup, Bull. Acad. Polon. Sci. Ser. Sci. Tech., 25 (1977), pp. 233-237. Zbl0363.45009MR459453
  11. [11] A. Palczewski, Spectral properties of the space nonhomogeneous linearized Boltzmann operator, Transp. TheoryStat. Phys., 13 (1984), pp. 409-430. Zbl0585.47023MR759864
  12. [12] M. Reed - B. Simon, Methods of Mathematical Physics, Vol. I, Functional Analysis, Academic Press, New York (1980). Zbl0242.46001MR751959
  13. [13] M. Reed - B. Simon, Methods of Mathematical Physics, Vol. IV, Analysis of Operators, Academic Press, New York (1978). Zbl0401.47001MR493421
  14. [14] M. Tabata, Decay of solutions to the mixed problem with the periodicity boundary condition for the linearized Boltzmann equation with conservative external force, Comm. Partial Differential Equations, 18 (1993), pp. 1823-1846. Zbl0798.35146MR1243527
  15. [15] M. Tabata, Decay of solutions to the Cauchy problem for the linearized Boltzmann equation with an unbounded external-force potential, Transp. TheoryStat. Phys., 23 (1994), pp. 741-780. Zbl0817.35116MR1279588
  16. [16] M. Wing, AnIntroduction to Transport Theory, J. Wiley and Sons, New York (1962). MR155646
  17. [17] B. Wennberg, Stability and exponential convergence for the Boltzmann equation, Doctoral Thesis. Göteborg University. 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.