Decay of solutions to the mixed problem for the linearized Boltzmann equation with a potential term in a polyhedral bounded domain

Minoru Tabata; Nobuoki Eshima

Rendiconti del Seminario Matematico della Università di Padova (2000)

  • Volume: 103, page 133-155
  • ISSN: 0041-8994

How to cite

top

Tabata, Minoru, and Eshima, Nobuoki. "Decay of solutions to the mixed problem for the linearized Boltzmann equation with a potential term in a polyhedral bounded domain." Rendiconti del Seminario Matematico della Università di Padova 103 (2000): 133-155. <http://eudml.org/doc/108516>.

@article{Tabata2000,
author = {Tabata, Minoru, Eshima, Nobuoki},
journal = {Rendiconti del Seminario Matematico della Università di Padova},
keywords = {decay of solution; mixed problem; Boltzmann equation; boundary conditions},
language = {eng},
pages = {133-155},
publisher = {Seminario Matematico of the University of Padua},
title = {Decay of solutions to the mixed problem for the linearized Boltzmann equation with a potential term in a polyhedral bounded domain},
url = {http://eudml.org/doc/108516},
volume = {103},
year = {2000},
}

TY - JOUR
AU - Tabata, Minoru
AU - Eshima, Nobuoki
TI - Decay of solutions to the mixed problem for the linearized Boltzmann equation with a potential term in a polyhedral bounded domain
JO - Rendiconti del Seminario Matematico della Università di Padova
PY - 2000
PB - Seminario Matematico of the University of Padua
VL - 103
SP - 133
EP - 155
LA - eng
KW - decay of solution; mixed problem; Boltzmann equation; boundary conditions
UR - http://eudml.org/doc/108516
ER -

References

top
  1. [1] G. Bartolomäus - J. Wilhelm, Existence and uniqueness of the solution of the nonstationary Boltzmann equation for the electrons in a collision dominated plasma by means of operator semigroup, Ann. Phys., 38 (1981), pp. 211-220. MR629561
  2. [2] R. Beals - V. PROTOPOPESCU, Abstract time-dependent transport equations, J. Math. Anal. Appl., 121 (1987), pp. 370-405. Zbl0657.45007MR872231
  3. [3] N. Bellomo, M. Lachowicz, A. Palczewski AND G. Toscani, On the initial value problem for the Boltzmann equation with a force term, Transp. TheoryStat. Phys., 18, 1 (1989), pp. 87-102. Zbl0699.35237MR1006668
  4. [4] H.B. Drange, On the Boltzmann equation with external forces, SIAM J. Appl. Math., 34 (1978), pp. 577-592. Zbl0397.76068MR479244
  5. [5] H. Grad, Asymptotic theory of the Boltzmann equation, II, in Rarefied Gas Dynamics (J. A. Laurmann Ed.), Academic Press, New York (1963), pp. 26-59. MR156656
  6. [6] H. Grad, Asymptotic equivalence of the Navier-Stokes and nonlinear Boltzmann equations, Proc. Symp. in Appl. Math., 17 (1965), pp. 154-183. [7] C.P. Grünfeld, On the nonlinear Boltzmann equation with force term, Transp. Theory Stat. Phys., 14, 3 (1985), pp. 291-322. Zbl0144.48203MR184507
  7. [8] C.P. Grünfeld, Global solution to a mixed problem for the Boltzmann equation with Lorentz force term, Transp. Theory Stat. Phys., 15, 4 (1986), pp. 529-549. Zbl0631.76091MR861407
  8. [9] F.A. Molinet, Existence, uniqueness and properties of the solutions of the Boltzmann kinetic equation for a weakly ionized gas I, J. Math. Phys., 18 (1977), pp. 984-996. Zbl0367.76068MR436842
  9. [10] A. Palczewski, A time dependent linear Boltzmann operator as the generator of a semigroup, Bull. Acad. Polon. Sci. Ser. Sci. Tech., 25 (1977), pp. 233-237. Zbl0363.45009MR459453
  10. [11] A. Palczewski, Spectral properties of the space nonhomogeneous linearized Boltzmann operator, Transp. TheoryStat. Phys., 13 (1984), pp. 409-430. Zbl0585.47023MR759864
  11. [12] M. Tabata, Decay of solutions to the mixed problem with the periodicity boundary condition for the Linearized Boltzmann equation with conservative external force, Comm. in Partial Differ. Eqs., 18, 11 (1993), pp. 1823-1846. Zbl0798.35146MR1243527
  12. [13] M. Tabata, Decay of solutions to the Cauchy problem for the linearized Boltzmann equation with an unbounded external-force potential, Transp. Theory Stat. Phys., 23, 6 (1994), pp. 741-780. Zbl0817.35116MR1279588
  13. [14] M. Tabata, The point spectrum of the linearized Boltzmann operator with an external-force potential in an exterior domain, Transp. Theory Stat. Phys., 24, 9 (1995), pp. 1271-1294. Zbl0871.76080MR1362330
  14. [15] M. Tabata - N. Eshima, The point spectrum of the linearized Boltzmann operator with the potential term in a semi-infinite domain and the corresponding eigenspaces, Rendiconti Sem. Mat. Univ. Politecnico di Torino, 53, 2 (1995), pp. 29-38. Zbl0841.76079MR1375405
  15. [16] M. Tabata - N. Eshima, The spectrum of the transport operator with a potential term under the spatial periodicity condition, Rendiconti Sem. Mat. Univ. Padova, 97 (1997), pp. 211-233. Zbl0887.45004MR1476172
  16. [17] B. Wennberg, Stability and exponential convergence for the Boltzmann equation, Doctoral Thesis, Götteborg University (1993). Zbl0828.76076

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.