Groups which are isomorphic to their nonabelian subgroups
Rendiconti del Seminario Matematico della Università di Padova (1997)
- Volume: 97, page 7-16
- ISSN: 0041-8994
Access Full Article
topHow to cite
topReferences
top- [1] B. Bruno - R.E. Phillips, Groups with restricted non-normal subgroups, Math. Z., 176 (1981), pp. 199-221. Zbl0474.20014MR607962
- [2] P.H. Kropholler, On finitely generated soluble groups with no large wreath product sections, Proc. London Math. Soc. (3), 49 (1984), pp. 155-169. Zbl0537.20013MR743376
- [3] J.C. Lennox - H. SMITH - J. WIEGOLD, A problem on normal subgroups, J. Pure and Applied Algebra, 88 (1993), pp. 169-171. Zbl0797.20027MR1233321
- [4] G.A. Miller - H.C. Moreno, Non-abelian groups in which every subgroup is abelian, Trans. Amer. Math. Soc., 4 (1903), pp. 398-404. Zbl34.0173.01MR1500650JFM34.0173.01
- [5] M. B. NATHANSON (Editor), Number Theory, Carbondale 1979, Lecture Notes in Math., 751, Springer (1979). Zbl0405.00004MR564918
- [6] A. Yu.OL'SHANSKII, Geometry of Defining Relations in Groups, Nauka, Moscow (1989). Zbl0676.20014MR1024791
- [7] D. Segal, Polycyclic Groups, Cambridge Tracts in Mathematics, 82, C.U.P. (1983). Zbl0516.20001MR713786
- [8] H. Smith, On homomorphic images of locally graded groups, Rend. Sem. Mat. Univ. Padova, 91 (1994), pp. 53-60. Zbl0817.20035MR1289630
- [9] I.N. Stewart - D.O. Tall, Algebraic Number Theory, second edition, Chap-man and Hall (1987). Zbl0663.12001MR896691