Groups which are isomorphic to their nonabelian subgroups

Howard Smith; James Wiegold

Rendiconti del Seminario Matematico della Università di Padova (1997)

  • Volume: 97, page 7-16
  • ISSN: 0041-8994

How to cite

top

Smith, Howard, and Wiegold, James. "Groups which are isomorphic to their nonabelian subgroups." Rendiconti del Seminario Matematico della Università di Padova 97 (1997): 7-16. <http://eudml.org/doc/108432>.

@article{Smith1997,
author = {Smith, Howard, Wiegold, James},
journal = {Rendiconti del Seminario Matematico della Università di Padova},
keywords = {nonabelian subgroups; soluble groups; locally graded groups; subgroups of finite index; groups isomorphic to proper subgroups},
language = {eng},
pages = {7-16},
publisher = {Seminario Matematico of the University of Padua},
title = {Groups which are isomorphic to their nonabelian subgroups},
url = {http://eudml.org/doc/108432},
volume = {97},
year = {1997},
}

TY - JOUR
AU - Smith, Howard
AU - Wiegold, James
TI - Groups which are isomorphic to their nonabelian subgroups
JO - Rendiconti del Seminario Matematico della Università di Padova
PY - 1997
PB - Seminario Matematico of the University of Padua
VL - 97
SP - 7
EP - 16
LA - eng
KW - nonabelian subgroups; soluble groups; locally graded groups; subgroups of finite index; groups isomorphic to proper subgroups
UR - http://eudml.org/doc/108432
ER -

References

top
  1. [1] B. Bruno - R.E. Phillips, Groups with restricted non-normal subgroups, Math. Z., 176 (1981), pp. 199-221. Zbl0474.20014MR607962
  2. [2] P.H. Kropholler, On finitely generated soluble groups with no large wreath product sections, Proc. London Math. Soc. (3), 49 (1984), pp. 155-169. Zbl0537.20013MR743376
  3. [3] J.C. Lennox - H. SMITH - J. WIEGOLD, A problem on normal subgroups, J. Pure and Applied Algebra, 88 (1993), pp. 169-171. Zbl0797.20027MR1233321
  4. [4] G.A. Miller - H.C. Moreno, Non-abelian groups in which every subgroup is abelian, Trans. Amer. Math. Soc., 4 (1903), pp. 398-404. Zbl34.0173.01MR1500650JFM34.0173.01
  5. [5] M. B. NATHANSON (Editor), Number Theory, Carbondale 1979, Lecture Notes in Math., 751, Springer (1979). Zbl0405.00004MR564918
  6. [6] A. Yu.OL'SHANSKII, Geometry of Defining Relations in Groups, Nauka, Moscow (1989). Zbl0676.20014MR1024791
  7. [7] D. Segal, Polycyclic Groups, Cambridge Tracts in Mathematics, 82, C.U.P. (1983). Zbl0516.20001MR713786
  8. [8] H. Smith, On homomorphic images of locally graded groups, Rend. Sem. Mat. Univ. Padova, 91 (1994), pp. 53-60. Zbl0817.20035MR1289630
  9. [9] I.N. Stewart - D.O. Tall, Algebraic Number Theory, second edition, Chap-man and Hall (1987). Zbl0663.12001MR896691

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.