Groups which are isomorphic to their nonabelian subgroups

Howard Smith; James Wiegold

Rendiconti del Seminario Matematico della Università di Padova (1997)

  • Volume: 97, page 7-16
  • ISSN: 0041-8994

How to cite

top

Smith, Howard, and Wiegold, James. "Groups which are isomorphic to their nonabelian subgroups." Rendiconti del Seminario Matematico della Università di Padova 97 (1997): 7-16. <http://eudml.org/doc/108432>.

@article{Smith1997,
author = {Smith, Howard, Wiegold, James},
journal = {Rendiconti del Seminario Matematico della Università di Padova},
keywords = {nonabelian subgroups; soluble groups; locally graded groups; subgroups of finite index; groups isomorphic to proper subgroups},
language = {eng},
pages = {7-16},
publisher = {Seminario Matematico of the University of Padua},
title = {Groups which are isomorphic to their nonabelian subgroups},
url = {http://eudml.org/doc/108432},
volume = {97},
year = {1997},
}

TY - JOUR
AU - Smith, Howard
AU - Wiegold, James
TI - Groups which are isomorphic to their nonabelian subgroups
JO - Rendiconti del Seminario Matematico della Università di Padova
PY - 1997
PB - Seminario Matematico of the University of Padua
VL - 97
SP - 7
EP - 16
LA - eng
KW - nonabelian subgroups; soluble groups; locally graded groups; subgroups of finite index; groups isomorphic to proper subgroups
UR - http://eudml.org/doc/108432
ER -

References

top
  1. [1] B. Bruno - R.E. Phillips, Groups with restricted non-normal subgroups, Math. Z., 176 (1981), pp. 199-221. Zbl0474.20014MR607962
  2. [2] P.H. Kropholler, On finitely generated soluble groups with no large wreath product sections, Proc. London Math. Soc. (3), 49 (1984), pp. 155-169. Zbl0537.20013MR743376
  3. [3] J.C. Lennox - H. SMITH - J. WIEGOLD, A problem on normal subgroups, J. Pure and Applied Algebra, 88 (1993), pp. 169-171. Zbl0797.20027MR1233321
  4. [4] G.A. Miller - H.C. Moreno, Non-abelian groups in which every subgroup is abelian, Trans. Amer. Math. Soc., 4 (1903), pp. 398-404. Zbl34.0173.01MR1500650JFM34.0173.01
  5. [5] M. B. NATHANSON (Editor), Number Theory, Carbondale 1979, Lecture Notes in Math., 751, Springer (1979). Zbl0405.00004MR564918
  6. [6] A. Yu.OL'SHANSKII, Geometry of Defining Relations in Groups, Nauka, Moscow (1989). Zbl0676.20014MR1024791
  7. [7] D. Segal, Polycyclic Groups, Cambridge Tracts in Mathematics, 82, C.U.P. (1983). Zbl0516.20001MR713786
  8. [8] H. Smith, On homomorphic images of locally graded groups, Rend. Sem. Mat. Univ. Padova, 91 (1994), pp. 53-60. Zbl0817.20035MR1289630
  9. [9] I.N. Stewart - D.O. Tall, Algebraic Number Theory, second edition, Chap-man and Hall (1987). Zbl0663.12001MR896691

NotesEmbed ?

top

You must be logged in to post comments.