Homoclinic-type solutions for an almost periodic semilinear elliptic equation on
Francesca Alessio; Marta Calanchi
Rendiconti del Seminario Matematico della Università di Padova (1997)
- Volume: 97, page 89-111
- ISSN: 0041-8994
Access Full Article
topHow to cite
topAlessio, Francesca, and Calanchi, Marta. "Homoclinic-type solutions for an almost periodic semilinear elliptic equation on $R^n$." Rendiconti del Seminario Matematico della Università di Padova 97 (1997): 89-111. <http://eudml.org/doc/108434>.
@article{Alessio1997,
author = {Alessio, Francesca, Calanchi, Marta},
journal = {Rendiconti del Seminario Matematico della Università di Padova},
keywords = {homoclinic solutions},
language = {eng},
pages = {89-111},
publisher = {Seminario Matematico of the University of Padua},
title = {Homoclinic-type solutions for an almost periodic semilinear elliptic equation on $R^n$},
url = {http://eudml.org/doc/108434},
volume = {97},
year = {1997},
}
TY - JOUR
AU - Alessio, Francesca
AU - Calanchi, Marta
TI - Homoclinic-type solutions for an almost periodic semilinear elliptic equation on $R^n$
JO - Rendiconti del Seminario Matematico della Università di Padova
PY - 1997
PB - Seminario Matematico of the University of Padua
VL - 97
SP - 89
EP - 111
LA - eng
KW - homoclinic solutions
UR - http://eudml.org/doc/108434
ER -
References
top- [1] A. Ambrosetti - M.L. Bertotti, Homoclinics for second order conservative systems, in Partial Differential Equation and Related Subjects, edited by M. MIRANDA, Pitman Research Notes in Math. Ser.1992. Zbl0804.34046MR1190931
- [2] A. Ambrosetti - V. Coti Zelati, Multiple homoclinic orbits for a class of conservative systems, Preprint SNS, 1992. Zbl0771.70010
- [3] C. Corduneanu, Almost Periodic Function, Interscience Publishers (1968). MR481915
- [4] V. Coti Zelati - I. Ekeland - E. Séré, A variational approach to homoclinic orbits in Hamiltonian systems, Math. Ann., 288 (1990), pp. 133-160. Zbl0731.34050MR1070929
- [5] V. Coti Zelati - P.H. Rabinowitz, Homoclinic orbits for second order Hamiltonian systems possessing superquadratic potentials, J. Amer. Math. Soc., 4 (1991), pp. 693-727. Zbl0744.34045MR1119200
- [6] V. Coti Zelati - P.H. Rabinowitz, Homoclinic type solutions for a semilinear elliptic PDE on Rn, Comm. Pure Appl. Math., 45 (1992), pp. 1217-1269. Zbl0785.35029MR1181725
- [7] D. Gilbarg - N. S. TRUDINGER, Elliptic Partial Differential Equations of Second Order, Springer-Verlag, 2nd edition (1983). Zbl0562.35001MR737190
- [8] P.L. Lions, The concentration compactness principle in the calculus of variations. The locally compact case, part 2, Analyse Nonlin., 1 (1984), pp. 223-283. Zbl0704.49004MR778974
- [9] P. Montecchiari, Multiplicity results for a class of semilinear elliptic equations on Rn, Preprint SISSA, 1994.
- [10] P. Montecchiari, Existence and multiplicity of homoclinic solutions for a class of asymptotically periodic second order Hamiltonian systems, Ann. Mat. Pura Appl. (IV), 168 (1995), pp. 317-354. Zbl0849.34035MR1378249
- [11] P. Montecchiari - M. Nolasco, Multibump solutions for pertubations of periodic second order Hamiltonian systems, Preprint SISSA, 1994. Zbl0863.34050MR1408876
- [12] E.S. Noussair - C.A. Swanson, Positive solutions of semilinear elliptic problems in unbounded domains, J. Diff. Eq., 57 (1985), pp. 349-372. Zbl0583.35039MR790281
- [13] M.H. Protter - H. F. WEINBERGER, Maximum Principles in Differential Equations, Prentice-Hall (1967). Zbl0153.13602MR219861
- [14] P.H. Rabinowitz, A note on a semilinear elliptic equation on Rn, in A Tribute in Honour of Giovanni Prodi, Quaderni Scuola Normale Superiore, Pisa (1991). Zbl0836.35045MR1205391
- [15] E. Séré, Existence of infinitely many homoclinic orbits in Hamiltonian systems, Math. Zeit., 209 (1991), pp. 27-42. Zbl0725.58017MR1143210
- [16] E. Séré, Looking for the Bernoulli shift, Ann. IHP Anal. Nonlinéaire, 10 (1993), pp. 561-590 Zbl0803.58013MR1249107
- [17] E. Serra - M. Tarallo - S. Terracini, On the existence of homoclinic solutions for almost periodic second order systems, Ann. IHP Anal. Nonlinéaire, 13 (1996), pp. 783-812. Zbl0873.58032MR1420498
- [18] S. Zaidman, Almost-Periodic Functions in Abstract Spaces, Pitman Advanced Publishing Program (1985). Zbl0648.42006MR790316
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.