Homoclinic-type solutions for an almost periodic semilinear elliptic equation on R n

Francesca Alessio; Marta Calanchi

Rendiconti del Seminario Matematico della Università di Padova (1997)

  • Volume: 97, page 89-111
  • ISSN: 0041-8994

How to cite

top

Alessio, Francesca, and Calanchi, Marta. "Homoclinic-type solutions for an almost periodic semilinear elliptic equation on $R^n$." Rendiconti del Seminario Matematico della Università di Padova 97 (1997): 89-111. <http://eudml.org/doc/108434>.

@article{Alessio1997,
author = {Alessio, Francesca, Calanchi, Marta},
journal = {Rendiconti del Seminario Matematico della Università di Padova},
keywords = {homoclinic solutions},
language = {eng},
pages = {89-111},
publisher = {Seminario Matematico of the University of Padua},
title = {Homoclinic-type solutions for an almost periodic semilinear elliptic equation on $R^n$},
url = {http://eudml.org/doc/108434},
volume = {97},
year = {1997},
}

TY - JOUR
AU - Alessio, Francesca
AU - Calanchi, Marta
TI - Homoclinic-type solutions for an almost periodic semilinear elliptic equation on $R^n$
JO - Rendiconti del Seminario Matematico della Università di Padova
PY - 1997
PB - Seminario Matematico of the University of Padua
VL - 97
SP - 89
EP - 111
LA - eng
KW - homoclinic solutions
UR - http://eudml.org/doc/108434
ER -

References

top
  1. [1] A. Ambrosetti - M.L. Bertotti, Homoclinics for second order conservative systems, in Partial Differential Equation and Related Subjects, edited by M. MIRANDA, Pitman Research Notes in Math. Ser.1992. Zbl0804.34046MR1190931
  2. [2] A. Ambrosetti - V. Coti Zelati, Multiple homoclinic orbits for a class of conservative systems, Preprint SNS, 1992. Zbl0771.70010
  3. [3] C. Corduneanu, Almost Periodic Function, Interscience Publishers (1968). MR481915
  4. [4] V. Coti Zelati - I. Ekeland - E. Séré, A variational approach to homoclinic orbits in Hamiltonian systems, Math. Ann., 288 (1990), pp. 133-160. Zbl0731.34050MR1070929
  5. [5] V. Coti Zelati - P.H. Rabinowitz, Homoclinic orbits for second order Hamiltonian systems possessing superquadratic potentials, J. Amer. Math. Soc., 4 (1991), pp. 693-727. Zbl0744.34045MR1119200
  6. [6] V. Coti Zelati - P.H. Rabinowitz, Homoclinic type solutions for a semilinear elliptic PDE on Rn, Comm. Pure Appl. Math., 45 (1992), pp. 1217-1269. Zbl0785.35029MR1181725
  7. [7] D. Gilbarg - N. S. TRUDINGER, Elliptic Partial Differential Equations of Second Order, Springer-Verlag, 2nd edition (1983). Zbl0562.35001MR737190
  8. [8] P.L. Lions, The concentration compactness principle in the calculus of variations. The locally compact case, part 2, Analyse Nonlin., 1 (1984), pp. 223-283. Zbl0704.49004MR778974
  9. [9] P. Montecchiari, Multiplicity results for a class of semilinear elliptic equations on Rn, Preprint SISSA, 1994. 
  10. [10] P. Montecchiari, Existence and multiplicity of homoclinic solutions for a class of asymptotically periodic second order Hamiltonian systems, Ann. Mat. Pura Appl. (IV), 168 (1995), pp. 317-354. Zbl0849.34035MR1378249
  11. [11] P. Montecchiari - M. Nolasco, Multibump solutions for pertubations of periodic second order Hamiltonian systems, Preprint SISSA, 1994. Zbl0863.34050MR1408876
  12. [12] E.S. Noussair - C.A. Swanson, Positive solutions of semilinear elliptic problems in unbounded domains, J. Diff. Eq., 57 (1985), pp. 349-372. Zbl0583.35039MR790281
  13. [13] M.H. Protter - H. F. WEINBERGER, Maximum Principles in Differential Equations, Prentice-Hall (1967). Zbl0153.13602MR219861
  14. [14] P.H. Rabinowitz, A note on a semilinear elliptic equation on Rn, in A Tribute in Honour of Giovanni Prodi, Quaderni Scuola Normale Superiore, Pisa (1991). Zbl0836.35045MR1205391
  15. [15] E. Séré, Existence of infinitely many homoclinic orbits in Hamiltonian systems, Math. Zeit., 209 (1991), pp. 27-42. Zbl0725.58017MR1143210
  16. [16] E. Séré, Looking for the Bernoulli shift, Ann. IHP Anal. Nonlinéaire, 10 (1993), pp. 561-590 Zbl0803.58013MR1249107
  17. [17] E. Serra - M. Tarallo - S. Terracini, On the existence of homoclinic solutions for almost periodic second order systems, Ann. IHP Anal. Nonlinéaire, 13 (1996), pp. 783-812. Zbl0873.58032MR1420498
  18. [18] S. Zaidman, Almost-Periodic Functions in Abstract Spaces, Pitman Advanced Publishing Program (1985). Zbl0648.42006MR790316

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.