On the existence of homoclinic solutions for almost periodic second order systems
Enrico Serra; Massimo Tarallo; Susanna Terracini
Annales de l'I.H.P. Analyse non linéaire (1996)
- Volume: 13, Issue: 6, page 783-812
- ISSN: 0294-1449
Access Full Article
topHow to cite
topSerra, Enrico, Tarallo, Massimo, and Terracini, Susanna. "On the existence of homoclinic solutions for almost periodic second order systems." Annales de l'I.H.P. Analyse non linéaire 13.6 (1996): 783-812. <http://eudml.org/doc/78401>.
@article{Serra1996,
author = {Serra, Enrico, Tarallo, Massimo, Terracini, Susanna},
journal = {Annales de l'I.H.P. Analyse non linéaire},
keywords = {homoclinic solution; second order Lagrangian},
language = {eng},
number = {6},
pages = {783-812},
publisher = {Gauthier-Villars},
title = {On the existence of homoclinic solutions for almost periodic second order systems},
url = {http://eudml.org/doc/78401},
volume = {13},
year = {1996},
}
TY - JOUR
AU - Serra, Enrico
AU - Tarallo, Massimo
AU - Terracini, Susanna
TI - On the existence of homoclinic solutions for almost periodic second order systems
JO - Annales de l'I.H.P. Analyse non linéaire
PY - 1996
PB - Gauthier-Villars
VL - 13
IS - 6
SP - 783
EP - 812
LA - eng
KW - homoclinic solution; second order Lagrangian
UR - http://eudml.org/doc/78401
ER -
References
top- [1] A. Ambrosetti and M.L. Bertotti, Homoclinics for second order conservative systems, Preprint SNS, 1991. Zbl0804.34046MR1190931
- [2] A. Ambrosetti and V. Coti Zelati, Multiple homoclinic orbits for a class of conservative systems, Preprint SNS, 1992. Zbl0780.49008
- [3] M.L. Bertotti and S.V. Bolotin, Homoclinic solutions of quasiperiodic Lagrangian systems, Preprint, Università di Trento, 1994. Zbl0827.34037MR1347977
- [4] S.V. Bolotin, The existence of homoclinic motions, Vestnik Moskow Univ. Ser I Math. Mekh., Vol. 6, 1980, pp. 98-103. Zbl0549.58019MR728558
- [5] P. Caldiroli and P. Montecchiari, Homoclinic orbits for second order Hamiltonian Systems with potential changing sign, Preprint, SISSA, 1994. Zbl0867.70012MR1280118
- [6] P. Montecchiari, Existence and multiplicity of homoclinic solutions for a class of asymptotically periodic second order Hamiltonian Systems, Preprint, SISSA, 1993. Zbl0802.34052MR1269616
- [7] V. Coti Zelati, I. Ekeland and E. Séré, A variational approach to homoclinic orbits in Hamiltonian systems, Math. Ann., Vol. 288, 1990, pp. 133-160. Zbl0731.34050MR1070929
- [8] V. Coti Zelati and P.H. Rabinowitz, Homoclinic orbits for second order Hamiltonian systems possessing superquadratic potentials, Jour. of AMS, Vol. 4, 1991 pp. 693-727. Zbl0744.34045MR1119200
- [9] B.M. Levitan and V.V. Zhikov, Almost periodic functions and differential equations, (Cambridge University Press, ed.), 1982 Zbl0499.43005MR690064
- [10] K.R. Meyer and G. Sell, Homoclinic orbits and Bernoulli bundles in almost periodic systems, Oscillations, bifurcations and chaos (Amer. Math. Soc., Providence, R.I., ed.), 1987. Zbl0636.34037MR909934
- [11] K.R. Meyer and G. Sell, Melnikov transforms, Bernoulli bundles and almost periodic perturbations, Trans. AMS, Vol. 314, 1989, pp. 63-105. Zbl0707.34041MR954601
- [12] P.H. Rabinowitz, Homoclinic orbits for a class of Hamiltonian systems, Proc. Roy. Soc. Edinburgh, Vol. 114A, 1990, pp. 33-38. Zbl0705.34054MR1051605
- [13] P.H. Rabinowitz, Homoclinic and heteroclinic orbits for a class of Hamiltonian system, Calc. Var. and PDE, Vol. 1, 1993, pp. 1-36. Zbl0791.34042MR1261715
- [14] E. Séré, Existence of infinitely many homoclinic orbits in Hamiltonian systems, Math. Zeit., Vol. 209, 1991, pp. 27-42. Zbl0725.58017MR1143210
- [15] E. Séré, Looking for the Bernoulli shift, Ann. Inst. H. Poincaré, Anal. Non Linéaire, Vol. 10, 1993, pp. 561-590. Zbl0803.58013MR1249107
- [16] E. Séré, Homoclinic orbits on compact hypersurfaces in R of restricted contact type, Preprint CEREMADE, 1992.
Citations in EuDML Documents
top- Gregory S. Spradlin, Scattered homoclinics to a class of time-recurrent Hamiltonian systems
- Francesca Alessio, Marta Calanchi, Homoclinic-type solutions for an almost periodic semilinear elliptic equation on
- Vittorio Coti Zelati, Margherita Nolasco, Multibump solutions for Hamiltonian systems with fast and slow forcing
- Gregory S. Spradlin, An elliptic equation with no monotonicity condition on the nonlinearity
- Francesca Alessio, Piero Montecchiari, Multibump solutions for a class of lagrangian systems slowly oscillating at infinity
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.