Asymmetric bound states of differential equations in nonlinear optics

A. Ambrosetti; D. Arcoya; J. L. Gámez

Rendiconti del Seminario Matematico della Università di Padova (1998)

  • Volume: 100, page 231-247
  • ISSN: 0041-8994

How to cite

top

Ambrosetti, A., Arcoya, D., and Gámez, J. L.. "Asymmetric bound states of differential equations in nonlinear optics." Rendiconti del Seminario Matematico della Università di Padova 100 (1998): 231-247. <http://eudml.org/doc/108459>.

@article{Ambrosetti1998,
author = {Ambrosetti, A., Arcoya, D., Gámez, J. L.},
journal = {Rendiconti del Seminario Matematico della Università di Padova},
keywords = {Schrödinger equation; bifurcation; nonlinear optics; asymmetric solutions; Poincaré-Melnikov theory; homoclinics},
language = {eng},
pages = {231-247},
publisher = {Seminario Matematico of the University of Padua},
title = {Asymmetric bound states of differential equations in nonlinear optics},
url = {http://eudml.org/doc/108459},
volume = {100},
year = {1998},
}

TY - JOUR
AU - Ambrosetti, A.
AU - Arcoya, D.
AU - Gámez, J. L.
TI - Asymmetric bound states of differential equations in nonlinear optics
JO - Rendiconti del Seminario Matematico della Università di Padova
PY - 1998
PB - Seminario Matematico of the University of Padua
VL - 100
SP - 231
EP - 247
LA - eng
KW - Schrödinger equation; bifurcation; nonlinear optics; asymmetric solutions; Poincaré-Melnikov theory; homoclinics
UR - http://eudml.org/doc/108459
ER -

References

top
  1. [1] N.N. Akhmediev, Novel class of nonlinear surface waves: Asymmetric modes in a symmetric layered structure, Sov. Phys. JEPT, 56 (1982), pp. 299-303. 
  2. [2] A. Ambrosetti - M. Badiale, Homoclinics: Poincaré-Melnikov type results via a variational approach. Annales I.H.P. - Anal. Nonlin., to appear. Preliminary note on C. R. Acad. Sci. Paris, 323, Série I (1996), pp. 753-758. Zbl0887.34042MR1416171
  3. [3] A. Ambrosetti - M. Badiale, Variational perturbative methods and bifurcation of bound states from the essential spectrum, Preprint Scuola Normale Superiore, March 1997, to appear. Zbl0928.34029MR1664089
  4. [4] M. Grillakis - J. Shatah - W. Strauss, Stability theory of solitary waves in the presence of symmetry I and II, Jour. Funct. Anal., 74 (1987), pp. 160-197 and 94 (1990), pp. 308-348. Zbl0656.35122MR901236
  5. [5] C.K.R.T. Jones - J.V. Moloney, Instability of standing waves in nonlinear optical waveguides, Phys. Lett. A, 117 (1986), pp. 176-184. 
  6. [6] Y.G. Oh, On positive muLti-bump states of nonlinear Schrödinger equations under multipte well potentials, Comm. Math. Phys., 131 (1990), pp. 223-253. Zbl0753.35097MR1065671
  7. [7] C. Stuart, Guidance properties of nonlinear planar waveguides, Arch. Rational Mech. Analysis, 125 (1993), pp. 145-200. Zbl0801.35136MR1245069

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.