Metodi variazionali e topologici nello studio delle equazioni di Schrödinger nonlineari agli stati stazionari

Silvia Cingolani

Bollettino dell'Unione Matematica Italiana (2001)

  • Volume: 4-B, Issue: 2, page 319-343
  • ISSN: 0392-4041

Abstract

top
In the present paper we survey some recents results concerning existence of semiclassical standing waves solutions for nonlinear Schrödinger equations. Furthermore, from Maxwell's equations we derive a nonlinear Schrödinger equation which represents a model of propagation of an electromagnetic field in optical waveguides.

How to cite

top

Cingolani, Silvia. "Metodi variazionali e topologici nello studio delle equazioni di Schrödinger nonlineari agli stati stazionari." Bollettino dell'Unione Matematica Italiana 4-B.2 (2001): 319-343. <http://eudml.org/doc/194933>.

@article{Cingolani2001,
author = {Cingolani, Silvia},
journal = {Bollettino dell'Unione Matematica Italiana},
language = {ita},
month = {6},
number = {2},
pages = {319-343},
publisher = {Unione Matematica Italiana},
title = {Metodi variazionali e topologici nello studio delle equazioni di Schrödinger nonlineari agli stati stazionari},
url = {http://eudml.org/doc/194933},
volume = {4-B},
year = {2001},
}

TY - JOUR
AU - Cingolani, Silvia
TI - Metodi variazionali e topologici nello studio delle equazioni di Schrödinger nonlineari agli stati stazionari
JO - Bollettino dell'Unione Matematica Italiana
DA - 2001/6//
PB - Unione Matematica Italiana
VL - 4-B
IS - 2
SP - 319
EP - 343
LA - ita
UR - http://eudml.org/doc/194933
ER -

References

top
  1. AKHMEDIEV, N. N., Novel class of nonlinear surface waves, Asymmetric modes in a symmetric layered structure, Sov. Phys. JEPT, 56 (1982), 299-303. 
  2. ANGENENT, S., The Shadowing Lemma for Elliptic PDE, Dynamics of Infinite Dimensional Systems (S. N. Chow and J. K. Hale eds.), F37 (1987). Zbl0653.35030MR921893
  3. AMBROSETTI, A.- ARCOYA, D.- GÁMEZ, J. L., Asymmetric bound states of differential equations in Nonlinear Optics, Rend. Sem. Mat. Padova, 100 (1998), 231-247. Zbl0922.34020MR1675283
  4. AMBROSETTI, A.- BADIALE, M., Homoclinics: Poincaré-Melnikov type results via a variational approach, Ann. Inst. H. Poincaré, Anal. Nonlin., 15 (1998), 233-252. Zbl1004.37043MR1614571
  5. AMBROSETTI, A.- BADIALE, M.- CINGOLANI, S., Semiclassical states of nonlinear Schrödinger equations with bounded potentials, Rendiconti dell'Accademia Nazionale dei Lincei, ser. IX, 7 (1996), 155-160. Zbl0872.35098MR1454410
  6. AMBROSETTI, A.- BADIALE, M.- CINGOLANI, S., Semiclassical states of nonlinear Schrödinger equations, Arch. Rat. Mech. Anal., 140 (1997), 285-300. Zbl0896.35042MR1486895
  7. AMBROSETTI, A.- COTI ZELATI, V.- EKELAND, I., Symmetry breaking in Hamiltonian systems, J. Diff. Eq., 67 (1987), 165-184. Zbl0606.58043MR879691
  8. ARCOYA, D.- CINGOLANI, S.- GÁMEZ, J. L., Asymmetric modes in symmetric nonlinear optical waveguides, SIAM Math. Anal., 30 (1999), 1391-1400. Zbl0933.34014MR1718307
  9. BARTSCH, T.- WANG, Z. Q., Existence and multiplicity results for some superlinear elliptic problems on R N , Comm. Part. Diff. Eq., 20 (1995), 1725-1741. Zbl0837.35043MR1349229
  10. BENCI, V.- CERAMI, G., The effect of the domain topology on the number of positive solutions of nonlinear elliptic problems, Arch. Rat. Mech. Anal., 114 (1991), 79-93. Zbl0727.35055MR1088278
  11. BENCI, V.- CERAMI, G., Multiple positive solutions of some elliptic problems via the Morse theory and the domain topology, Calc. Var., 2 (1994), 29-48. Zbl0822.35046MR1384393
  12. BENCI, V.- CERAMI, G.- PASSASEO, D., On the number of the positive solutions of some nonlinear elliptic problems, Nonlinear Analysis, A tribute in honour of G. Prodi, Quaderno Scuola Norm. Sup., Pisa1991, 93-107. Zbl0838.35040MR1205376
  13. BERESTYCKI, H.- LIONS, P. L., Nonlinear scalar field equations, I - Existence of a ground state, Arch. Rat. Mech. Anal., 82 (1983), 313-375. Zbl0533.35029MR695535
  14. BREZIS, H.- NIRENBERG, L., Positive solutions of nonlinear elliptic equations involving critical Sobolev exponents, Comm. Pure Appl. Math., 36 (1983), 437-477. Zbl0541.35029MR709644
  15. CINGOLANI, S., On a perturbed semilinear elliptic equation in R N , Comm. Applied Anal., 3 (1999), 49-57. Zbl0922.35051MR1669769
  16. CINGOLANI, S., Positive solutions to perturbed elliptic problems in R N involving critical Sobolev exponent, to appear on Nonlinear Analysis, T.M.A. Zbl1097.35047MR1880579
  17. CINGOLANI, S.- GÁMEZ, J. L., Asymmetric positive solutions for a symmetric nonlinear problem in R N , Calc. Var. PDE, 11 (2000), 97-117. Zbl0968.35043MR1777465
  18. CINGOLANI, S.- LAZZO, M., Multiple semiclassical standing waves for a class of nonlinear Schrödinger equations, Top. Meth. Nonlinear Anal., 10 (1997), 1-13. Zbl0903.35018MR1646619
  19. CINGOLANI, S.- LAZZO, M., Multiple positive solutions to nonlinear Schrödinger equations with competing potential functions, J. Diff. Eq., 160 (2000), 118-138. Zbl0952.35043MR1734531
  20. CINGOLANI, S.- NOLASCO, M., Multi-peak periodic semiclassical states of nonlinear Schrödinger equations, Proc. Royal Soc. Edin., 128 A (1998), 1249-1260. Zbl0922.35158MR1664105
  21. CORON, J. M., Topologie et cas limite des injections de Sobolev, C.R.A.S., Ser. I, 299 (1984), 209-212. Zbl0569.35032MR762722
  22. COTI ZELATI, V.- ESTEBAN, M. J., Symmetry breaking and multiple solutions for a Neumann problem in an exterior domain, Proc. Royal Soc. Edin., 116A (1990), 327-339. Zbl0748.35012MR1084737
  23. COTI ZELATI, V.- RABINOWITZ, P., Homoclinic orbits for second order Hamiltonian systems possessing superquadratic potentials, J. Amer. Math. Soc., 4 (1991), 693-727. Zbl0744.34045MR1119200
  24. COTI ZELATI, V.- RABINOWITZ, P., Homoclinics type solutions for a semilinear elliptic PDE on R N , Comm. Pure Appl. Math., 45 (1992), 1217-1269. Zbl0785.35029MR1181725
  25. FLOER, A.- WEINSTEIN, A., Nonspreading wave packets for the cubic Schrödinger equation with a bounded potential, J. Funct. Anal., 69 (1986), 397-408. Zbl0613.35076MR867665
  26. DEL PINO, M.- FELMER, P. L., Local mountain pass for semilinear elliptic problems in unbounded domains, Calc. Var. PDE, 4 (1996), 121-137. Zbl0844.35032MR1379196
  27. DEL PINO, M.- FELMER, P. L., Semiclassical states of nonlinear Schrödinger equations, J. Func. Anal., 149 (1997), 245-265. Zbl0887.35058MR1471107
  28. DEL PINO, M.- FELMER, P. L., Multi-peak bound states of nonlinear Schrödinger equations, Ann. Inst. H. Poincarè, Anal. Nonlin., 15 (1998), 127-149. Zbl0901.35023MR1614646
  29. ESTEBAN, M. J., Nonsymmetric ground states of symmetric variational problems, Comm. Pure Appl. Math., 44 (1991), 259-274. Zbl0826.49002MR1085830
  30. GIDAS, B.- NI, W. M.- NIREMBERG, L., Symmetry of positive solutions of nonlinear elliptic equations in R N , Math. Analysis Appl., Part A 7 (1981), 369-402. Zbl0469.35052
  31. GRILLAKIS, M.- SHATAH, J.- STRAUSS, W., Stability theory of solitary waves in the presence of symmetry, I, J. Funct. Anal., 74 (1987), 160-197. Zbl0656.35122MR901236
  32. GROSSI, M., Some recent results on a class of nonlinear Schrödinger equations, to appear on Math. Z. Zbl0970.35039MR1801580
  33. GUI, C., Existence of multi-bumps solutions for nonlinear Schrödinger equations via variational methods, Comm. Part. Diff. Eq., 21 (1996), 787-820. Zbl0857.35116MR1391524
  34. JOHN, O.- STUART, C., Guidance properties of a cylindrical defocusing waveguide, Comm. Math. Univ. Carolinae, 35 (1994), 653-673. Zbl0819.35137MR1321236
  35. KWONG, M. K., Uniqueness of Δ u - u + u p = 0 in R N , Arch. Rat. Mech. Anal., 105 (1989), 243-266. Zbl0676.35032MR969899
  36. LI, Y. Y., On a singularly perturbed elliptic equation, Adv. Diff. Eq., 2 (1997), 955-980. Zbl1023.35500MR1606351
  37. LI, Y., Remarks on a semilinear elliptic equation on R n , J. Diff. Eqs., 74 (1988), 34-49. Zbl0662.35038MR949624
  38. OH, Y. G., Existence of semiclassical bound states of nonlinear Schrödinger with potential in the class V a , Comm. Part. Diff. Eq., 13 (1988), 1499-1519. Zbl0702.35228MR970154
  39. OH, Y. G., On positive multi-bump states of nonlinear Schrödinger equation under multiple well potentials, Comm. Math. Phys., 131 (1990), 223-253. Zbl0753.35097MR1065671
  40. RABINNOWITZ, P., On a class of nonlinear Schrödinger equations, ZAMP, 43 (1992), 27-42. MR1162728
  41. RUPPEN, H., Multiple TE-Modes for planar self-focusing wave guides, Ann. Mat. Pura Appl., (IV) CLXXII (1997), 323-377. Zbl0937.78012MR1621183
  42. SÉRÉ, E., Existence of infinitely many homoclinic orbits in Hamiltonian systems, Math. Z., 209 (1992), 27-42. Zbl0725.58017MR1143210
  43. STUART, C., Self-trapping of an electromagnetic field and bifurcation from the essential spectrum, Arch. Rational Mech. Anal., 113 (1991), 65-96. Zbl0745.35044MR1079182
  44. STUART, C., Guidance properties of nonlinear planar waveguided, Arch. Rational Mech. Anal., 125 (1993), 145-200. Zbl0801.35136MR1245069
  45. STUART, C., The principle branch of solutions of a nonlinear elliptic eigenvalue problem in R N , J. Diff. Eqs., 124 (1996), 279-301. Zbl0842.35029MR1370142
  46. WANG, X., On a concentration of positive bound states of nonlinear Schrödinger equations, Comm. Math. Phys., 153 (1993), 223-243. Zbl0795.35118MR1218300
  47. WANG, X.- ZENG, B., On concentration of positive bound states of nonlinear Schrödinger equations with competing potential functions, SIAM J. Math. Anal., 28 (1997), 633-655. Zbl0879.35053MR1443612

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.