Eigenvalue estimates for the weighted laplacian on a riemannian manifold
Rendiconti del Seminario Matematico della Università di Padova (1998)
- Volume: 100, page 27-55
- ISSN: 0041-8994
Access Full Article
topHow to cite
topSetti, Alberto G.. "Eigenvalue estimates for the weighted laplacian on a riemannian manifold." Rendiconti del Seminario Matematico della Università di Padova 100 (1998): 27-55. <http://eudml.org/doc/108461>.
@article{Setti1998,
author = {Setti, Alberto G.},
journal = {Rendiconti del Seminario Matematico della Università di Padova},
keywords = {complete manifold; Laplace operator; Dirichlet form; weight function; Ricci curvature; eigenvalue bounds},
language = {eng},
pages = {27-55},
publisher = {Seminario Matematico of the University of Padua},
title = {Eigenvalue estimates for the weighted laplacian on a riemannian manifold},
url = {http://eudml.org/doc/108461},
volume = {100},
year = {1998},
}
TY - JOUR
AU - Setti, Alberto G.
TI - Eigenvalue estimates for the weighted laplacian on a riemannian manifold
JO - Rendiconti del Seminario Matematico della Università di Padova
PY - 1998
PB - Seminario Matematico of the University of Padua
VL - 100
SP - 27
EP - 55
LA - eng
KW - complete manifold; Laplace operator; Dirichlet form; weight function; Ricci curvature; eigenvalue bounds
UR - http://eudml.org/doc/108461
ER -
References
top- [Au] T. Aubin, Non Linear Analysis on Manifolds. Monge-Ampère Equations, Springer-Verlag, New York (1982). Zbl0512.53044MR681859
- [bK] D. Bakry, Un critere de non-explosion pour certaines diffusions sur une variete'riemannienne complète, C.R. Acad. Sci. Paris, 303 (1986), pp. 23-26. Zbl0589.60069MR849620
- [3] D. Bakry, Etude des transformations de Riesz dans les variétés riemanniennes à courbure de Ricci minorée, in Séminaire de Probabilités XXI, Lecture Notes in Mathemetics, 1247, pp. 137-172, Springer-Verlag, Berlin, Heidelberg (1987). Zbl0629.58018MR941980
- [BkE] D. Bakry - M. Emery, Diffusions hypercontractives, in Séminaire de Probabilites XIX, Lecture Notes in Mathemetics, 1123, pp. 179-206, Springer-Verlag, Berlin, Heidelberg (1985). Zbl0561.60080MR889476
- [5] P. Berard, Spectral Geometry: Direct and Inverse Problems, Lecture Notes in Mathematics, 1207, Springer-Verlag, Berlin, Heidelberg (1986). Zbl0608.58001MR861271
- [BGM] M. Berger - P. Gauduchon - E. Mazet, Le spectre d'une variété Riemannienne, Lecture Notes in Methematics, 194, Springer-Verlag, Berlin, Heidelberg (1971). Zbl0223.53034MR282313
- [Br] R. Brooks, Exponential growth and the spectrum of the Laplacian, Proc. Amer. Math. Soc., 82 (1981), pp. 473-477. Zbl0466.58028MR612743
- [Cg] S.Y. Cheng, Eigenvalue comparison theorems and its geometric applications, Math. Z., 143 (1975), pp. 289-297. Zbl0329.53035MR378001
- [Cl] I. Chavel, Eigenvalues in Riemannian Geometry, Academic Press, Orlando (1984). Zbl0551.53001MR768584
- [Da1] E.B. Davies, Heat kernel bounds for second order elliptic operators on Riemannian manifolds, Amer. J. Math., 109 (1987), pp. 545-570. Zbl0648.58037MR892598
- [Da2] E.B. Davies, Heat Kernels and Spectral Theory, Cambridge University Press, Cambridge (1989). Zbl0699.35006MR990239
- [Da3] E.B. Davies, Heat kernel bounds, conservation of probability, and the Feller property, preprint. Zbl0808.58041MR1226938
- [D1] J.D. Deuschel, On estimating the hypercontractive constant of a diffusion process on a compact manifold, preprint. Zbl0743.60075MR1110162
- [DIS] J.D. Deuschel - D.W. Stroock, Hypercontractivity and spectral gap of symmetric diffusions with applications to the stochastic Ising model, J. Funct. Anal., 92 (1990), pp. 30-48. Zbl0705.60066MR1064685
- [Hz] C. Herz, personal communication.
- [Li] P. Li, Poincaré inequalities on Riemannian manifolds, in Seminar on Differential Geometry, Ann. Math. Stud., 102 (1982), pp. 73-84. Zbl0492.53031
- [LiY] P. Li - S. T. YAU, Estimates of eigenvalues of a compact Riemannian manifold, Amer. Math. Soc. Proc. Symp. Pure Math., 36 (1980), pp. 205-240. Zbl0441.58014MR573435
- [Lz] A. Lichnerowicz, Géométrie des groupes de transformations, Dunod, Paris (1958). Zbl0096.16001MR124009
- [McK] H.P. McKean, An upper bound for the spectrum of Δ on a manifold of negative curvature, J. Diff. Geom., 4 (1970), pp. 359-366. Zbl0197.18003
- [ON] B. O'Neill, Semi-Riemannian Geometry. With Applicatios to Relativity, Academic Press, New York (1983). Zbl0531.53051MR719023
- [Pk] M. Pinsky, On the spectrum of Cartan-Hadamard manifolds, Pac. J. Math., 94 (1981), pp. 223-230. Zbl0466.58027MR625821
- [RSi] M. Reed - B. Simon, Methods of Modern Mathematical Physics. II. Fourier Analysis, Self adjointness, Academic Press, New York (1975). Zbl0308.47002MR493420
- [Se1] A.G. Setti, A lower bound for the spectrum of the Laplacian in terms of sectional and Ricci curvature, Proc. Amer. Math. Soc., 112 (1991), pp. 277-282. Zbl0726.58049MR1043421
- [Se2] A.G. Setti, Gaussian estimates for the heat kernel of the weighted Laplacian and fractal measures, J. Canad. Math. Soc., 44 (1992), pp. 1061-1078. Zbl0772.58058MR1186481
- [St] R.S. Strichartz, Analysis of the Laplacian on the complete Riemannian manifold, J. Funct. Anal., 52 (1983), pp. 48-79. Zbl0515.58037MR705991
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.