Eigenvalue estimates for the weighted laplacian on a riemannian manifold

Alberto G. Setti

Rendiconti del Seminario Matematico della Università di Padova (1998)

  • Volume: 100, page 27-55
  • ISSN: 0041-8994

How to cite

top

Setti, Alberto G.. "Eigenvalue estimates for the weighted laplacian on a riemannian manifold." Rendiconti del Seminario Matematico della Università di Padova 100 (1998): 27-55. <http://eudml.org/doc/108461>.

@article{Setti1998,
author = {Setti, Alberto G.},
journal = {Rendiconti del Seminario Matematico della Università di Padova},
keywords = {complete manifold; Laplace operator; Dirichlet form; weight function; Ricci curvature; eigenvalue bounds},
language = {eng},
pages = {27-55},
publisher = {Seminario Matematico of the University of Padua},
title = {Eigenvalue estimates for the weighted laplacian on a riemannian manifold},
url = {http://eudml.org/doc/108461},
volume = {100},
year = {1998},
}

TY - JOUR
AU - Setti, Alberto G.
TI - Eigenvalue estimates for the weighted laplacian on a riemannian manifold
JO - Rendiconti del Seminario Matematico della Università di Padova
PY - 1998
PB - Seminario Matematico of the University of Padua
VL - 100
SP - 27
EP - 55
LA - eng
KW - complete manifold; Laplace operator; Dirichlet form; weight function; Ricci curvature; eigenvalue bounds
UR - http://eudml.org/doc/108461
ER -

References

top
  1. [Au] T. Aubin, Non Linear Analysis on Manifolds. Monge-Ampère Equations, Springer-Verlag, New York (1982). Zbl0512.53044MR681859
  2. [bK] D. Bakry, Un critere de non-explosion pour certaines diffusions sur une variete'riemannienne complète, C.R. Acad. Sci. Paris, 303 (1986), pp. 23-26. Zbl0589.60069MR849620
  3. [3] D. Bakry, Etude des transformations de Riesz dans les variétés riemanniennes à courbure de Ricci minorée, in Séminaire de Probabilités XXI, Lecture Notes in Mathemetics, 1247, pp. 137-172, Springer-Verlag, Berlin, Heidelberg (1987). Zbl0629.58018MR941980
  4. [BkE] D. Bakry - M. Emery, Diffusions hypercontractives, in Séminaire de Probabilites XIX, Lecture Notes in Mathemetics, 1123, pp. 179-206, Springer-Verlag, Berlin, Heidelberg (1985). Zbl0561.60080MR889476
  5. [5] P. Berard, Spectral Geometry: Direct and Inverse Problems, Lecture Notes in Mathematics, 1207, Springer-Verlag, Berlin, Heidelberg (1986). Zbl0608.58001MR861271
  6. [BGM] M. Berger - P. Gauduchon - E. Mazet, Le spectre d'une variété Riemannienne, Lecture Notes in Methematics, 194, Springer-Verlag, Berlin, Heidelberg (1971). Zbl0223.53034MR282313
  7. [Br] R. Brooks, Exponential growth and the spectrum of the Laplacian, Proc. Amer. Math. Soc., 82 (1981), pp. 473-477. Zbl0466.58028MR612743
  8. [Cg] S.Y. Cheng, Eigenvalue comparison theorems and its geometric applications, Math. Z., 143 (1975), pp. 289-297. Zbl0329.53035MR378001
  9. [Cl] I. Chavel, Eigenvalues in Riemannian Geometry, Academic Press, Orlando (1984). Zbl0551.53001MR768584
  10. [Da1] E.B. Davies, Heat kernel bounds for second order elliptic operators on Riemannian manifolds, Amer. J. Math., 109 (1987), pp. 545-570. Zbl0648.58037MR892598
  11. [Da2] E.B. Davies, Heat Kernels and Spectral Theory, Cambridge University Press, Cambridge (1989). Zbl0699.35006MR990239
  12. [Da3] E.B. Davies, Heat kernel bounds, conservation of probability, and the Feller property, preprint. Zbl0808.58041MR1226938
  13. [D1] J.D. Deuschel, On estimating the hypercontractive constant of a diffusion process on a compact manifold, preprint. Zbl0743.60075MR1110162
  14. [DIS] J.D. Deuschel - D.W. Stroock, Hypercontractivity and spectral gap of symmetric diffusions with applications to the stochastic Ising model, J. Funct. Anal., 92 (1990), pp. 30-48. Zbl0705.60066MR1064685
  15. [Hz] C. Herz, personal communication. 
  16. [Li] P. Li, Poincaré inequalities on Riemannian manifolds, in Seminar on Differential Geometry, Ann. Math. Stud., 102 (1982), pp. 73-84. Zbl0492.53031
  17. [LiY] P. Li - S. T. YAU, Estimates of eigenvalues of a compact Riemannian manifold, Amer. Math. Soc. Proc. Symp. Pure Math., 36 (1980), pp. 205-240. Zbl0441.58014MR573435
  18. [Lz] A. Lichnerowicz, Géométrie des groupes de transformations, Dunod, Paris (1958). Zbl0096.16001MR124009
  19. [McK] H.P. McKean, An upper bound for the spectrum of Δ on a manifold of negative curvature, J. Diff. Geom., 4 (1970), pp. 359-366. Zbl0197.18003
  20. [ON] B. O'Neill, Semi-Riemannian Geometry. With Applicatios to Relativity, Academic Press, New York (1983). Zbl0531.53051MR719023
  21. [Pk] M. Pinsky, On the spectrum of Cartan-Hadamard manifolds, Pac. J. Math., 94 (1981), pp. 223-230. Zbl0466.58027MR625821
  22. [RSi] M. Reed - B. Simon, Methods of Modern Mathematical Physics. II. Fourier Analysis, Self adjointness, Academic Press, New York (1975). Zbl0308.47002MR493420
  23. [Se1] A.G. Setti, A lower bound for the spectrum of the Laplacian in terms of sectional and Ricci curvature, Proc. Amer. Math. Soc., 112 (1991), pp. 277-282. Zbl0726.58049MR1043421
  24. [Se2] A.G. Setti, Gaussian estimates for the heat kernel of the weighted Laplacian and fractal measures, J. Canad. Math. Soc., 44 (1992), pp. 1061-1078. Zbl0772.58058MR1186481
  25. [St] R.S. Strichartz, Analysis of the Laplacian on the complete Riemannian manifold, J. Funct. Anal., 52 (1983), pp. 48-79. Zbl0515.58037MR705991

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.