On the wellposedness in the Gevrey classes of the Cauchy problem for weakly hyperbolic equations whose coefficients are Hölder continuous in and degenerate in
Rendiconti del Seminario Matematico della Università di Padova (1998)
- Volume: 100, page 81-96
- ISSN: 0041-8994
Access Full Article
topHow to cite
topKinoshita, Tamotu. "On the wellposedness in the Gevrey classes of the Cauchy problem for weakly hyperbolic equations whose coefficients are Hölder continuous in $t$ and degenerate in $t = T$." Rendiconti del Seminario Matematico della Università di Padova 100 (1998): 81-96. <http://eudml.org/doc/108465>.
@article{Kinoshita1998,
author = {Kinoshita, Tamotu},
journal = {Rendiconti del Seminario Matematico della Università di Padova},
keywords = {order of degeneration; Levi conditions},
language = {eng},
pages = {81-96},
publisher = {Seminario Matematico of the University of Padua},
title = {On the wellposedness in the Gevrey classes of the Cauchy problem for weakly hyperbolic equations whose coefficients are Hölder continuous in $t$ and degenerate in $t = T$},
url = {http://eudml.org/doc/108465},
volume = {100},
year = {1998},
}
TY - JOUR
AU - Kinoshita, Tamotu
TI - On the wellposedness in the Gevrey classes of the Cauchy problem for weakly hyperbolic equations whose coefficients are Hölder continuous in $t$ and degenerate in $t = T$
JO - Rendiconti del Seminario Matematico della Università di Padova
PY - 1998
PB - Seminario Matematico of the University of Padua
VL - 100
SP - 81
EP - 96
LA - eng
KW - order of degeneration; Levi conditions
UR - http://eudml.org/doc/108465
ER -
References
top- [1] M. Cicognani, On the strictly hyperbolic equations which are Hölder continuous with respect to time, preprint. Zbl0967.35087MR1695477
- [2] F. Colombini - E. De Giorgi - S. Spagnolo, Sur les equations hyperboliques avec des coefficients qui ne d6pendent que du temps, Ann. Scuola Norm. Sup. Pisa, 6 (1979), pp. 511-559. Zbl0417.35049MR553796
- [3] F. Colombini - E. Jannelli - S. Spagnolo, Wellposedness in the Gevrey classes of the Cauchy problem for a non strictly hyperbolic equation with coefficients depending on time, Ann. Scuola Norm. Sup. Pisa, 10 (1983), pp. 291-312. Zbl0543.35056MR728438
- [4] P. D'Ancona, Gevrey well posedness of an abstract Cauchy problem of weakly hyperbolic type, Publ. RIMS Kyoto Univ., 24 (1988), pp. 433-449. Zbl0706.35077MR966182
- [5] P. D'Ancona, Local existence for semilinear weakly hyperbolic equations with time dependent coefficients, Nonlinear Analysis. Theory, Methods and Applications, Vol 21, No. 9 (1993), pp. 685-696. Zbl0830.35089MR1246287
- [6] V. Ya.IVRII, Cauchy problem conditions for hyperbolic operators with characteristics of variable multiplicity for Gevrey classes, Siberian. Math., 17 (1976), pp. 921-931. Zbl0404.35068
- [7] K. Kajitani, The well posed Cauchy problem for hyperbolic operators, Exposé au Séminaire de Vaillant du 8 février (1989).
- [8] T. Kinoshita, On the wellposedness in the Gevrey classes of the Cauchy problem for weakly hyperbolic systems with Hölder continuous coefficients in t, preprint. Zbl0933.35119
- [9] M. Reissig - K. Yagdjian, Levi conditions and global Gevrey regularity for the solutions of quasilinear weakly hyperbolic equations, Mathematische Nachrichten, 178 (1996), pp. 285-307. Zbl0848.35078MR1380714
- [10] T. Nishitani, Sur les équations hyperboliues à coefficients hölderiens en t et de classes de Gevrey en x, Bull. Sci. Math., 107 (1983), pp. 739-773. Zbl0552.35051MR704720
- [11] H. Odai, On the Cauchy problem for a hyperbolic equation of second order, Doctoral thesis (1994). Zbl0802.11043
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.