On the wellposedness in the Gevrey classes of the Cauchy problem for weakly hyperbolic equations whose coefficients are Hölder continuous in t and degenerate in t = T

Tamotu Kinoshita

Rendiconti del Seminario Matematico della Università di Padova (1998)

  • Volume: 100, page 81-96
  • ISSN: 0041-8994

How to cite

top

Kinoshita, Tamotu. "On the wellposedness in the Gevrey classes of the Cauchy problem for weakly hyperbolic equations whose coefficients are Hölder continuous in $t$ and degenerate in $t = T$." Rendiconti del Seminario Matematico della Università di Padova 100 (1998): 81-96. <http://eudml.org/doc/108465>.

@article{Kinoshita1998,
author = {Kinoshita, Tamotu},
journal = {Rendiconti del Seminario Matematico della Università di Padova},
keywords = {order of degeneration; Levi conditions},
language = {eng},
pages = {81-96},
publisher = {Seminario Matematico of the University of Padua},
title = {On the wellposedness in the Gevrey classes of the Cauchy problem for weakly hyperbolic equations whose coefficients are Hölder continuous in $t$ and degenerate in $t = T$},
url = {http://eudml.org/doc/108465},
volume = {100},
year = {1998},
}

TY - JOUR
AU - Kinoshita, Tamotu
TI - On the wellposedness in the Gevrey classes of the Cauchy problem for weakly hyperbolic equations whose coefficients are Hölder continuous in $t$ and degenerate in $t = T$
JO - Rendiconti del Seminario Matematico della Università di Padova
PY - 1998
PB - Seminario Matematico of the University of Padua
VL - 100
SP - 81
EP - 96
LA - eng
KW - order of degeneration; Levi conditions
UR - http://eudml.org/doc/108465
ER -

References

top
  1. [1] M. Cicognani, On the strictly hyperbolic equations which are Hölder continuous with respect to time, preprint. Zbl0967.35087MR1695477
  2. [2] F. Colombini - E. De Giorgi - S. Spagnolo, Sur les equations hyperboliques avec des coefficients qui ne d6pendent que du temps, Ann. Scuola Norm. Sup. Pisa, 6 (1979), pp. 511-559. Zbl0417.35049MR553796
  3. [3] F. Colombini - E. Jannelli - S. Spagnolo, Wellposedness in the Gevrey classes of the Cauchy problem for a non strictly hyperbolic equation with coefficients depending on time, Ann. Scuola Norm. Sup. Pisa, 10 (1983), pp. 291-312. Zbl0543.35056MR728438
  4. [4] P. D'Ancona, Gevrey well posedness of an abstract Cauchy problem of weakly hyperbolic type, Publ. RIMS Kyoto Univ., 24 (1988), pp. 433-449. Zbl0706.35077MR966182
  5. [5] P. D'Ancona, Local existence for semilinear weakly hyperbolic equations with time dependent coefficients, Nonlinear Analysis. Theory, Methods and Applications, Vol 21, No. 9 (1993), pp. 685-696. Zbl0830.35089MR1246287
  6. [6] V. Ya.IVRII, Cauchy problem conditions for hyperbolic operators with characteristics of variable multiplicity for Gevrey classes, Siberian. Math., 17 (1976), pp. 921-931. Zbl0404.35068
  7. [7] K. Kajitani, The well posed Cauchy problem for hyperbolic operators, Exposé au Séminaire de Vaillant du 8 février (1989). 
  8. [8] T. Kinoshita, On the wellposedness in the Gevrey classes of the Cauchy problem for weakly hyperbolic systems with Hölder continuous coefficients in t, preprint. Zbl0933.35119
  9. [9] M. Reissig - K. Yagdjian, Levi conditions and global Gevrey regularity for the solutions of quasilinear weakly hyperbolic equations, Mathematische Nachrichten, 178 (1996), pp. 285-307. Zbl0848.35078MR1380714
  10. [10] T. Nishitani, Sur les équations hyperboliues à coefficients hölderiens en t et de classes de Gevrey en x, Bull. Sci. Math., 107 (1983), pp. 739-773. Zbl0552.35051MR704720
  11. [11] H. Odai, On the Cauchy problem for a hyperbolic equation of second order, Doctoral thesis (1994). Zbl0802.11043

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.