Higher solutions of hypergeometric systems and Dwork cohomology

Alan Adolphson

Rendiconti del Seminario Matematico della Università di Padova (1999)

  • Volume: 101, page 179-190
  • ISSN: 0041-8994

How to cite

top

Adolphson, Alan. "Higher solutions of hypergeometric systems and Dwork cohomology." Rendiconti del Seminario Matematico della Università di Padova 101 (1999): 179-190. <http://eudml.org/doc/108483>.

@article{Adolphson1999,
author = {Adolphson, Alan},
journal = {Rendiconti del Seminario Matematico della Università di Padova},
keywords = {-modules; hypergeometric functions; monomials; hypergeometric differential module; Dwork cohomology},
language = {eng},
pages = {179-190},
publisher = {Seminario Matematico of the University of Padua},
title = {Higher solutions of hypergeometric systems and Dwork cohomology},
url = {http://eudml.org/doc/108483},
volume = {101},
year = {1999},
}

TY - JOUR
AU - Adolphson, Alan
TI - Higher solutions of hypergeometric systems and Dwork cohomology
JO - Rendiconti del Seminario Matematico della Università di Padova
PY - 1999
PB - Seminario Matematico of the University of Padua
VL - 101
SP - 179
EP - 190
LA - eng
KW - -modules; hypergeometric functions; monomials; hypergeometric differential module; Dwork cohomology
UR - http://eudml.org/doc/108483
ER -

References

top
  1. [1] A. Adolphson, Hypergeometric functions and rings generated by monomials, Duke Math. J., 73 (1994), pp. 269-290. Zbl0804.33013MR1262208
  2. [2] A. Adolphson - S. Sperber, Exponential sums and Newton polyhedra: cohomology and estimates, Ann. of Math., 130 (1989), pp. 367-406. Zbl0723.14017MR1014928
  3. [3] I.N. Bernstein, The analytic continuation of generalized functions with respect to a parameter, Functional Analysis and its Applications, 6 (1972), pp. 273-285 (English translation). Zbl0282.46038MR320735
  4. [4] A. Borel et al., Algebraic D-Modules, Academic Press (1987). Zbl0642.32001MR882000
  5. [5] B. Dwork, On the zeta function of a hypersurface, Publ. Math. I. H. E. S., 12 (1962), pp. 5-68. Zbl0173.48601MR159823
  6. [6] B. Dwork, On the zeta function of a hypersurface, III, Ann. of Math., 83 (1966), pp. 457-519. Zbl0173.48601MR209296
  7. [7] B. Dwork - F. LOESER, Hypergeometric series, Japanese J. Math., 19 (1993), pp. 81-129. Zbl0796.12005MR1231511
  8. [8] L. Ehrenpreis, Fourier Analysis in Several Complex Variables, John Wiley and Sons (1970). Zbl0195.10401MR285849
  9. [9] I.M. Gelfand - A.V. Zelevinskii - M.M. Kapranov, Hypergeometric functions and toral manifolds, Functional Analysis and its Applications, 23 (1989), pp. 94-106 (English translation). Zbl0721.33006MR1011353
  10. [10] M. Hochster, Rings of invariants of tori, Cohen-Macaulay rings generated by monomials, and polytopes, Ann. of Math., 96 (1972), pp. 318-337. Zbl0237.14019MR304376
  11. [11] A.G. Kouchnirenko, Polyèdres de Newton et nombres de Milnor, Invent. Math., 32 (1976), pp. 1-31. Zbl0328.32007MR419433
  12. [12] P. Monsky, Finiteness of de Rham cohomology, Amer. J. Math., 94 (1972), pp. 237-245. Zbl0241.14010MR301017
  13. [13] V.P. Palamodov, Linear Differential Operators with Constant Coefficients, Springer-Verlag (1970). Zbl0191.43401MR264197
  14. [14] E. Spanier, Algebraic Topology, McGraw-Hill (1966). Zbl0145.43303MR210112

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.