Homogeneous totally real submanifolds of complex projective space

Cristián U. Sánchez; Ana L. Calí; José L. Moreschi

Rendiconti del Seminario Matematico della Università di Padova (1999)

  • Volume: 101, page 83-94
  • ISSN: 0041-8994

How to cite

top

Sánchez, Cristián U., Calí, Ana L., and Moreschi, José L.. "Homogeneous totally real submanifolds of complex projective space." Rendiconti del Seminario Matematico della Università di Padova 101 (1999): 83-94. <http://eudml.org/doc/108494>.

@article{Sánchez1999,
author = {Sánchez, Cristián U., Calí, Ana L., Moreschi, José L.},
journal = {Rendiconti del Seminario Matematico della Università di Padova},
keywords = {complex projective space; real flag manifold; totally real submanifold; parallel second fundamental form},
language = {eng},
pages = {83-94},
publisher = {Seminario Matematico of the University of Padua},
title = {Homogeneous totally real submanifolds of complex projective space},
url = {http://eudml.org/doc/108494},
volume = {101},
year = {1999},
}

TY - JOUR
AU - Sánchez, Cristián U.
AU - Calí, Ana L.
AU - Moreschi, José L.
TI - Homogeneous totally real submanifolds of complex projective space
JO - Rendiconti del Seminario Matematico della Università di Padova
PY - 1999
PB - Seminario Matematico of the University of Padua
VL - 101
SP - 83
EP - 94
LA - eng
KW - complex projective space; real flag manifold; totally real submanifold; parallel second fundamental form
UR - http://eudml.org/doc/108494
ER -

References

top
  1. [1] A.L. Besse, Einstein Manifolds, Springer-Verlag, Berlin, Heidelberg (1987). Ergebnisse der Mathematic und ihrer Grenzgebiete 3F. Bd. 10. Zbl0613.53001MR867684
  2. [2] B.Y. Chen - K. Ogiue, On totally real submanifolds, Transactions of theAmer. Math. Soc., 193 (1974), pp. 257-266. Zbl0286.53019MR346708
  3. [3] M. Dajczer - G. Thorbergsson, Holomorphicity of Minimal Submanifolds in Complex Space Forms, Math. Ann., 277 (1987), pp. 353-360. Zbl0631.53046MR891580
  4. [4] D. Ferus - S. SCHIRRMACHER, Submanifolds in Euclidean space with simple geodesics, Math. Ann., 260 (1982), pp. 57-62. Zbl0474.53004MR664365
  5. [5] S. Helgason, Differential geometry, Lie groups and symmetric spaces, Academic Press, New York (1978). Zbl0451.53038MR514561
  6. [6] H. Naitoh, Isotropic submanifolds with parallel second fundamental forms in Symmetric Spaces, Osaka J. Math., 17 (1980), pp. 95-110. Zbl0427.53022MR558321
  7. [7] H. Naitoh, Isotropic submanifolds with parallel second fundamental forms in Pm(c), Osaka J. Math., 18 (1981), pp. 427-464. Zbl0471.53036MR628843
  8. [8] C. Olmos C.- Sánchez C., A geometric characterization of the orbits of s-representations, J. reine angew. Math., 420 (1991), pp. 195-202. Zbl0727.53012MR1124572
  9. [9] Sánchez C., A characterization of extrinsik k-symmetric submanifolds of RN, Revista de la Union Matemática Argentina, 38 (1992), pp. 1-15. Zbl0819.53005MR1276012
  10. [10] C. Sánchez, The tightness of certain almost complex submanifolds, Proc. Amer. Math. Soc., 110 (1990), pp. 807-811. Zbl0716.53035MR1025282
  11. [11] C. Sánchez - W. Dal Lago - A. García - E. Hulett, On some properties which characterize Symmetric and general R-Spaces, to appear in Differential Geometry and its applications. Zbl0898.53042MR1480541
  12. [12] J. Wolf, The action of a real semisimple group on a complex flag manifold I: Orbit structure and holomorphic arc components, Bull. Amer. Math. Soc., 75 (1968), pp. 1121-1237. Zbl0183.50901MR251246

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.