-spaces of Iwasawa type and algebraic rank one.
The aim of this paper is to classify (lócally) all torsion-less locally homogeneous affine connections on two-dimensional manifolds from a group-theoretical point of view. For this purpose, we are using the classification of all non-equivalent transitive Lie algebras of vector fields in ℝ2 according to P.J. Olver [7].
Let G be a complex reductive connected algebraic group equipped with the Sklyanin bracket. A classification of Poisson homogeneous G-spaces with connected isotropy subgroups is given. This result is based on Drinfeld's correspondence between Poisson homogeneous G-spaces and Lagrangian subalgebras in the double D𝖌 (here 𝖌 = Lie G). A geometric interpretation of some Poisson homogeneous G-spaces is also proposed.
We construct series of examples of non-flat non-homogeneous parabolic geometries that carry a symmetry of the parabolic geometry at each point.
Dato un cono aperto non vuoto, convesso, regolare e affinemente omogeneo in uno spazio vettoriale reale di dimensione finita si prova che per ogni appartenente a esiste un diffeomorfismo che soddisfa le condizioni seguenti E1) ; E2) per ogni appartenente a ove è la funzione caratteristica di .
In this note we continue a theme taken up in part I, see [Gzyl and Recht: The geometry on the class of probabilities (I). The finite dimensional case. Rev. Mat. Iberoamericana 22 (2006), 545-558], namely to provide a geometric interpretation of exponential families as end points of geodesics of a non-metric connection in a function space. For that we characterize the space of probability densities as a projective space in the class of strictly positive functions, and these will be regarded as a...
We construct a non-homogeneous contact projective structure which is symmetric from the point of view of parabolic geometries.
In this note we study the Ledger conditions on the families of flag manifold , , constructed by N. R. Wallach in (Wallach, N. R., Compact homogeneous Riemannian manifols with strictly positive curvature, Ann. of Math. 96 (1972), 276–293.). In both cases, we conclude that every member of the both families of Riemannian flag manifolds is a D’Atri space if and only if it is naturally reductive. Therefore, we finish the study of made by D’Atri and Nickerson in (D’Atri, J. E., Nickerson, H. K., Geodesic...
We prove that every compact, normal Riemannian homogeneous manifold admits an adapted complex structure on its entire tangent bundle.
We give a complete characterization of the locally compact groups that are non elementary Gromov-hyperbolic and amenable. They coincide with the class of mapping tori of discrete or continuous one-parameter groups of compacting automorphisms. We moreover give a description of all Gromov-hyperbolic locally compact groups with a cocompact amenable subgroup: modulo a compact normal subgroup, these turn out to be either rank one simple Lie groups, or automorphism groups of semiregular trees acting doubly...