Convergence of numerical algorithms for semilinear hyperbolic system
D. Aregba-Driollet; J.-M. Mercier
Rendiconti del Seminario Matematico della Università di Padova (1999)
- Volume: 102, page 241-283
- ISSN: 0041-8994
Access Full Article
topHow to cite
topAregba-Driollet, D., and Mercier, J.-M.. "Convergence of numerical algorithms for semilinear hyperbolic system." Rendiconti del Seminario Matematico della Università di Padova 102 (1999): 241-283. <http://eudml.org/doc/108505>.
@article{Aregba1999,
author = {Aregba-Driollet, D., Mercier, J.-M.},
journal = {Rendiconti del Seminario Matematico della Università di Padova},
keywords = {semilinear hyperbolic systems; explicit finite difference scheme; stability; consistency; convergence; systems of wave equations; numerical experiments; Broadwell system},
language = {eng},
pages = {241-283},
publisher = {Seminario Matematico of the University of Padua},
title = {Convergence of numerical algorithms for semilinear hyperbolic system},
url = {http://eudml.org/doc/108505},
volume = {102},
year = {1999},
}
TY - JOUR
AU - Aregba-Driollet, D.
AU - Mercier, J.-M.
TI - Convergence of numerical algorithms for semilinear hyperbolic system
JO - Rendiconti del Seminario Matematico della Università di Padova
PY - 1999
PB - Seminario Matematico of the University of Padua
VL - 102
SP - 241
EP - 283
LA - eng
KW - semilinear hyperbolic systems; explicit finite difference scheme; stability; consistency; convergence; systems of wave equations; numerical experiments; Broadwell system
UR - http://eudml.org/doc/108505
ER -
References
top- [1] D. Aregba-Driollet, The blow up curve for a semilinear hyperbolic system, preprint 95008 Mathématiques Appliquées de Bordeaux (1995).
- [2] D. Aregba-Driollet - B. Hanouzet, Cauchy problem for one-dimensional semilinear hyperbolic systems: global existence, blow up, J. Differential Equations, 125 (1996), pp. 1-26. Zbl0859.35069MR1376058
- [3] J.M. Bony, Existence globale à données de pour les modèles discrets de l'équation de Boltzmann, Comm. in partial differential equations, 16 (1991). Zbl0736.35064MR1113097
- [4] L.A. Caffarelli - A. FRIEDMAN, The blow-up boundary for nonlinear wave equations, Trans. Amer. Math. Soc., 297 (1986), pp. 223-241. Zbl0638.35053MR849476
- [5] R.E. Caflisch - S. Jin - G. Russo, Uniformly accurate schemes for hyperbolic systems with relaxation. Technical report, Università dell'Aquila (1994). Zbl0868.35070
- [6] F. Castillo-Aranguren - H. Juarez-Valencia - A. Nicolas-Carrizosa, Theoritical and numerical aspects of some semilinear hyperbolic problems, Calcolo (1994), pp. 337-354. Zbl0815.35068MR1353273
- [7] A.J. Chorin - T. Jr. Hugues - M.F. McCracken - J.E. Marsden, Product formulas and numerical algorithms, CPAM, 31 (1978), p. 205-256. Zbl0358.65082MR488713
- [8] D. Driollet - B. Hanouzet, Systèmes hyperboliques semi-linéaires conservatifs 1-d, C.R. Acad. Sc. Paris, 307, serie I (1988), pp. 231-234. Zbl0696.35102MR956812
- [9] E. Gabetta - L. Pareschi, Approximating the Broadwell model in a strip, Math. Models and Methods in Appl. Sci., 2 (1992), pp. 1-19. Zbl0763.76070MR1159473
- [10] T. Kato, Nonlinear equations of evolution in banach spaces, Proc. Sympos. Pure Math., 45 (2) (1986), pp. 9-23. Zbl0606.35049MR843591
- [11] D.J. Kaup - A. REIMAN - A. BERS, Space-time evolution of nonlinear three-wave interaction. 1. interaction in a homogeneous medium, Reviews of Modern Physics, 51 (1979). MR536598
- [12] A. Majda, Compressible fluid flow and systems of conservation laws in several space variables, Springer Verlag, New York (1984). Zbl0537.76001MR748308
- [13] J.-M. Mercier, Sur des Systèmes d'équations des ondes semi-linéaires. PhD thesis, université Bordeaux, 1 (1996).
- [14] J.-M. Mercier, Global existence and long time estimation for an integrodifferential system, Preprint dell' universita di Pisa 2.275.1047, to be published in Ricerche di Matematica (1997). Zbl0955.45008
- [15] J.M. Mercier, Note over a multigrid adaptive mesh refinement technique for hyperbolic problems, preprint SISSA 53/98/M (1998).
- [16] R. Natalini - B. RUBINO, A discrete approximation for hyperbolic systems with quadratic interaction term, Comm. Appl. Nonlinear Anal., 3 (1996), pp. 1-21. Zbl0874.35066MR1379435
- [17] Kuo Pen-Yu - L. Vasquez, Numerical solution of a nonlinear wave equation in polar coordinates, Appl. Math. Comput., 14 (1984), pp. 313-329. Zbl0542.65068MR744581
- [18] W.-A. Strauss - L. Vasquez, Numerical solution of a non-linear equation, J. Comput. Phys., 28 (1978), pp. 271-278. Zbl0387.65076MR503140
- [19] L. Tartar, Some existence theorems for semilinear hyperbolic systems in one space variable, Technical Report 2164, University of Wisconsin-Madison (1981).
- [20] R. Temam, Sur la résolution exacte et approchée d'un problème hyperbolique non-linéaire de T. Carleman, Arch. Rational Mech. Anal., 35 (1969), pp. 351-362. Zbl0189.10504MR251376
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.