Page 1 Next

Displaying 1 – 20 of 496

Showing per page

A class of time discrete schemes for a phase–field system of Penrose–Fife type

Olaf Klein (2010)

ESAIM: Mathematical Modelling and Numerical Analysis

In this paper, a phase field system of Penrose–Fife type with non–conserved order parameter is considered. A class of time–discrete schemes for an initial–boundary value problem for this phase–field system is presented. In three space dimensions, convergence is proved and an error estimate linear with respect to the time–step size is derived.

A domain splitting method for heat conduction problems in composite materials

Friedrich Karl Hebeker (2010)

ESAIM: Mathematical Modelling and Numerical Analysis

We consider a domain decomposition method for some unsteady heat conduction problem in composite structures. This linear model problem is obtained by homogenization of thin layers of fibres embedded into some standard material. For ease of presentation we consider the case of two space dimensions only. The set of finite element equations obtained by the backward Euler scheme is parallelized in a problem-oriented fashion by some noniterative overlapping domain splitting method, eventually enhanced...

A finite difference approach for the initial-boundary value problem of the fractional Klein-Kramers equation in phase space

Guang-hua Gao, Zhi-zhong Sun (2012)

Open Mathematics

Considering the features of the fractional Klein-Kramers equation (FKKE) in phase space, only the unilateral boundary condition in position direction is needed, which is different from the bilateral boundary conditions in [Cartling B., Kinetics of activated processes from nonstationary solutions of the Fokker-Planck equation for a bistable potential, J. Chem. Phys., 1987, 87(5), 2638–2648] and [Deng W., Li C., Finite difference methods and their physical constrains for the fractional Klein-Kramers...

A finite difference method for quasi-linear and nonlinear differential functional parabolic equations with Dirichlet's condition

Lucjan Sapa (2008)

Annales Polonici Mathematici

We deal with a finite difference method for a wide class of nonlinear, in particular strongly nonlinear or quasi-linear, second-order partial differential functional equations of parabolic type with Dirichlet's condition. The functional dependence is of the Volterra type and the right-hand sides of the equations satisfy nonlinear estimates of the generalized Perron type with respect to the functional variable. Under the assumptions adopted, quasi-linear equations are a special case of nonlinear...

A heterogeneous alternating-direction method for a micro-macro dilute polymeric fluid model

David J. Knezevic, Endre Süli (2009)

ESAIM: Mathematical Modelling and Numerical Analysis

We examine a heterogeneous alternating-direction method for the approximate solution of the FENE Fokker–Planck equation from polymer fluid dynamics and we use this method to solve a coupled (macro-micro) Navier–Stokes–Fokker–Planck system for dilute polymeric fluids. In this context the Fokker–Planck equation is posed on a high-dimensional domain and is therefore challenging from a computational point of view. The heterogeneous alternating-direction scheme combines a spectral Galerkin method for...

A linear mixed finite element scheme for a nematic Ericksen–Leslie liquid crystal model

F. M. Guillén-González, J. V. Gutiérrez-Santacreu (2013)

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

In this work we study a fully discrete mixed scheme, based on continuous finite elements in space and a linear semi-implicit first-order integration in time, approximating an Ericksen–Leslie nematic liquid crystal model by means of a Ginzburg–Landau penalized problem. Conditional stability of this scheme is proved via a discrete version of the energy law satisfied by the continuous problem, and conditional convergence towards generalized Young measure-valued solutions to the Ericksen–Leslie problem...

A linear scheme to approximate nonlinear cross-diffusion systems*

Hideki Murakawa (2011)

ESAIM: Mathematical Modelling and Numerical Analysis

This paper proposes a linear discrete-time scheme for general nonlinear cross-diffusion systems. The scheme can be regarded as an extension of a linear scheme based on the nonlinear Chernoff formula for the degenerate parabolic equations, which proposed by Berger et al. [RAIRO Anal. Numer.13 (1979) 297–312]. We analyze stability and convergence of the linear scheme. To this end, we apply the theory of reaction-diffusion system approximation. After discretizing the scheme in space, we obtain a versatile,...

A linear scheme to approximate nonlinear cross-diffusion systems*

Hideki Murakawa (2011)

ESAIM: Mathematical Modelling and Numerical Analysis

This paper proposes a linear discrete-time scheme for general nonlinear cross-diffusion systems. The scheme can be regarded as an extension of a linear scheme based on the nonlinear Chernoff formula for the degenerate parabolic equations, which proposed by Berger et al. [RAIRO Anal. Numer.13 (1979) 297–312]. We analyze stability and convergence of the linear scheme. To this end, we apply the theory of reaction-diffusion system approximation. After discretizing the scheme in space, we obtain a versatile,...

A local projection stabilization finite element method with nonlinear crosswind diffusion for convection-diffusion-reaction equations

Gabriel R. Barrenechea, Volker John, Petr Knobloch (2013)

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

An extension of the local projection stabilization (LPS) finite element method for convection-diffusion-reaction equations is presented and analyzed, both in the steady-state and the transient setting. In addition to the standard LPS method, a nonlinear crosswind diffusion term is introduced that accounts for the reduction of spurious oscillations. The existence of a solution can be proved and, depending on the choice of the stabilization parameter, also its uniqueness. Error estimates are derived...

A mixed formulation of a sharp interface model of stokes flow with moving contact lines

Shawn W. Walker (2014)

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

Two-phase fluid flows on substrates (i.e. wetting phenomena) are important in many industrial processes, such as micro-fluidics and coating flows. These flows include additional physical effects that occur near moving (three-phase) contact lines. We present a new 2-D variational (saddle-point) formulation of a Stokesian fluid with surface tension that interacts with a rigid substrate. The model is derived by an Onsager type principle using shape differential calculus (at the sharp-interface, front-tracking...

A model of macroscale deformation and microvibration in skeletal muscle tissue

Bernd Simeon, Radu Serban, Linda R. Petzold (2009)

ESAIM: Mathematical Modelling and Numerical Analysis

This paper deals with modeling the passive behavior of skeletal muscle tissue including certain microvibrations at the cell level. Our approach combines a continuum mechanics model with large deformation and incompressibility at the macroscale with chains of coupled nonlinear oscillators. The model verifies that an externally applied vibration at the appropriate frequency is able to synchronize microvibrations in skeletal muscle cells. From the numerical analysis point of view, one faces...

A modified Cayley transform for the discretized Navier-Stokes equations

K. A. Cliffe, T. J. Garratt, Alastair Spence (1993)

Applications of Mathematics

This paper is concerned with the problem of computing a small number of eigenvalues of large sparse generalized eigenvalue problems. The matrices arise from mixed finite element discretizations of time dependent equations modelling viscous incompressible flow. The eigenvalues of importance are those with smallest real part and are used to determine the linearized stability of steady states, and could be used in a scheme to detect Hopf bifurcations. We introduce a modified Cayley transform of the...

Currently displaying 1 – 20 of 496

Page 1 Next