Practical Aurifeuillian factorization

Bill Allombert[1]; Karim Belabas[2]

  • [1] Université Montpellier 2 CNRS I3M/LIRMM Place Eugène Bataillon F-34095 Montpellier cedex, France
  • [2] Université Bordeaux I Institut de mathématiques de Bordeaux (A2X) 351 cours de la Libération F-33405 Talence cedex, France

Journal de Théorie des Nombres de Bordeaux (2008)

  • Volume: 20, Issue: 3, page 543-553
  • ISSN: 1246-7405

Abstract

top
We describe a simple procedure to find Aurifeuillian factors of values of cyclotomic polynomials Φ d ( a ) for integers a and d > 0 . Assuming a suitable Riemann Hypothesis, the algorithm runs in deterministic time O ˜ ( d 2 L ) , using O ( d L ) space, where L log ( a + 1 ) .

How to cite

top

Allombert, Bill, and Belabas, Karim. "Practical Aurifeuillian factorization." Journal de Théorie des Nombres de Bordeaux 20.3 (2008): 543-553. <http://eudml.org/doc/10851>.

@article{Allombert2008,
abstract = {We describe a simple procedure to find Aurifeuillian factors of values of cyclotomic polynomials $\Phi _d(a)$ for integers $a$ and $d &gt; 0$. Assuming a suitable Riemann Hypothesis, the algorithm runs in deterministic time $\tilde\{O\}(d^2 L)$, using $O(d L)$ space, where $L \coloneqq\log (\left|a\right|+1)$.},
affiliation = {Université Montpellier 2 CNRS I3M/LIRMM Place Eugène Bataillon F-34095 Montpellier cedex, France; Université Bordeaux I Institut de mathématiques de Bordeaux (A2X) 351 cours de la Libération F-33405 Talence cedex, France},
author = {Allombert, Bill, Belabas, Karim},
journal = {Journal de Théorie des Nombres de Bordeaux},
language = {eng},
number = {3},
pages = {543-553},
publisher = {Université Bordeaux 1},
title = {Practical Aurifeuillian factorization},
url = {http://eudml.org/doc/10851},
volume = {20},
year = {2008},
}

TY - JOUR
AU - Allombert, Bill
AU - Belabas, Karim
TI - Practical Aurifeuillian factorization
JO - Journal de Théorie des Nombres de Bordeaux
PY - 2008
PB - Université Bordeaux 1
VL - 20
IS - 3
SP - 543
EP - 553
AB - We describe a simple procedure to find Aurifeuillian factors of values of cyclotomic polynomials $\Phi _d(a)$ for integers $a$ and $d &gt; 0$. Assuming a suitable Riemann Hypothesis, the algorithm runs in deterministic time $\tilde{O}(d^2 L)$, using $O(d L)$ space, where $L \coloneqq\log (\left|a\right|+1)$.
LA - eng
UR - http://eudml.org/doc/10851
ER -

References

top
  1. E. Bach & J. Sorenson, Explicit bounds for primes in residue classes. Math. Comp. 65 (1996), no. 216, pp. 1717–1735. Zbl0853.11077MR1355006
  2. R. P. Brent, Computing Aurifeuillian factors, in Computational algebra and number theory (Sydney, 1992). Math. Appl., vol. 325, Kluwer Acad. Publ., 1995, pp. 201–212. Zbl0840.12003MR1344931
  3. D. A. Burgess, On character sums and primitive roots. Proc. London Math. Soc. (3) 12 (1962), pp. 179–192. Zbl0106.04003MR132732
  4. H. Cohen, A course in computational algebraic number theory. Graduate Texts in Mathematics, vol. 138, Springer-Verlag, Berlin, 1993. Zbl0786.11071MR1228206
  5. A. Granville & P. Pleasants, Aurifeuillian factorization. Math. Comp. 75 (2006), no. 253, pp. 497–508. Zbl1107.11050MR2176412
  6. D. R. Heath-Brown, Zero-free regions for Dirichlet L -functions, and the least prime in an arithmetic progression. Proc. London Math. Soc. (3) 64 (1992), no. 2, pp. 265–338. Zbl0739.11033MR1143227
  7. H. Iwaniec, On the problem of Jacobsthal. Demonstratio Math. 11 (1978), no. 1, pp. 225–231. Zbl0378.10029MR499895
  8. PARI/GP, version 2.4.3, Bordeaux, 2008, http://pari.math.u-bordeaux.fr/. 
  9. A. Schinzel, On primitive prime factors of a n - b n . Proc. Cambridge Philos. Soc. 58 (1962), pp. 555–562. Zbl0114.02605MR143728
  10. P. Stevenhagen, On Aurifeuillian factorizations. Nederl. Akad. Wetensch. Indag. Math. 49 (1987), no. 4, pp. 451–468. Zbl0635.10010MR922449

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.