Displaying similar documents to “Practical Aurifeuillian factorization”

Almost powers in the Lucas sequence

Yann Bugeaud, Florian Luca, Maurice Mignotte, Samir Siksek (2008)

Journal de Théorie des Nombres de Bordeaux

Similarity:

The famous problem of determining all perfect powers in the Fibonacci sequence ( F n ) n 0 and in the Lucas sequence ( L n ) n 0 has recently been resolved []. The proofs of those results combine modular techniques from Wiles’ proof of Fermat’s Last Theorem with classical techniques from Baker’s theory and Diophantine approximation. In this paper, we solve the Diophantine equations L n = q a y p , with a > 0 and p 2 , for all primes q < 1087 and indeed for all but 13 primes q < 10 6 . Here the strategy of [] is not sufficient due to the sizes...

On the parity of generalized partition functions, III

Fethi Ben Saïd, Jean-Louis Nicolas, Ahlem Zekraoui (2010)

Journal de Théorie des Nombres de Bordeaux

Similarity:

Improving on some results of J.-L. Nicolas [], the elements of the set 𝒜 = 𝒜 ( 1 + z + z 3 + z 4 + z 5 ) , for which the partition function p ( 𝒜 , n ) (i.e. the number of partitions of n with parts in 𝒜 ) is even for all n 6 are determined. An asymptotic estimate to the counting function of this set is also given.

A generalization of Scholz’s reciprocity law

Mark Budden, Jeremiah Eisenmenger, Jonathan Kish (2007)

Journal de Théorie des Nombres de Bordeaux

Similarity:

We provide a generalization of Scholz’s reciprocity law using the subfields K 2 t - 1 and K 2 t of ( ζ p ) , of degrees 2 t - 1 and 2 t over , respectively. The proof requires a particular choice of primitive element for K 2 t over K 2 t - 1 and is based upon the splitting of the cyclotomic polynomial Φ p ( x ) over the subfields.