Stabilizing influence of a Skew-symmetric operator in semilinear parabolic equation

Jiří Neustupa

Rendiconti del Seminario Matematico della Università di Padova (1999)

  • Volume: 102, page 97-123
  • ISSN: 0041-8994

How to cite

top

Neustupa, Jiří. "Stabilizing influence of a Skew-symmetric operator in semilinear parabolic equation." Rendiconti del Seminario Matematico della Università di Padova 102 (1999): 97-123. <http://eudml.org/doc/108514>.

@article{Neustupa1999,
author = {Neustupa, Jiří},
journal = {Rendiconti del Seminario Matematico della Università di Padova},
keywords = {asymptotic stability; nonlinear parabolic differential equation; skew-symmetric part},
language = {eng},
pages = {97-123},
publisher = {Seminario Matematico of the University of Padua},
title = {Stabilizing influence of a Skew-symmetric operator in semilinear parabolic equation},
url = {http://eudml.org/doc/108514},
volume = {102},
year = {1999},
}

TY - JOUR
AU - Neustupa, Jiří
TI - Stabilizing influence of a Skew-symmetric operator in semilinear parabolic equation
JO - Rendiconti del Seminario Matematico della Università di Padova
PY - 1999
PB - Seminario Matematico of the University of Padua
VL - 102
SP - 97
EP - 123
LA - eng
KW - asymptotic stability; nonlinear parabolic differential equation; skew-symmetric part
UR - http://eudml.org/doc/108514
ER -

References

top
  1. [1] K.I. Babenko, Spectrum of the Linearized ProbLem of Flow of a Viscous Incompressible Liquid round a Body, Sov. Phys. Dikl., 27 (1) (1982), pp. 25-27. Zbl0504.76048
  2. [2] W. Borchers - T. Miyakawa, L2-Decay for Navier-Stokes Flows in Unbounded Domains, with Application to Exterior Stationary Flows, Arch. for Rat. Mech. and Anal., 118 (1992), pp. 273-295. Zbl0756.76018MR1158939
  3. [3] G.P. Galdi - M. PADULA, A New Approach to Energy Theory in the Stability of Fluid Motion, Arch. for Rat. Mech. and Anal., 110 (1990), pp. 187-286. Zbl0719.76035MR1060804
  4. [4] G.P. Galdi - S. Rionero, Weighted Energy Methods in Fluid Dynamics and Elasticity, Lecture Notes in Mathematics, 1134, Springer-Verlag, Berlin-Heidelberg -New York-Tokyo (1985). Zbl0585.76001MR801034
  5. [5] D. Henry, Geometric Theory of Semilinear Parabolic Equations, Lecture Notes in Mathematics, 840, Springer-Verlag, Berlin-Heidelberg -New York (1981). Zbl0456.35001MR610244
  6. [6] T. Kato, Perturbation Theory for Linear Operators, Springer-Verlag, Berlin-Heidelberg- New York (1966). Zbl0148.12601MR203473
  7. [7] H. Kielhöfer, Existenz und Regularität vonLösungen semilinearer parabolisher Anfangs-Randwertprobleme, Math. Z., 142 (1975), pp. 131-160. Zbl0324.35047MR393854
  8. [8] H. Kielhöfer, On the Lyapunov Stability of stationary Solutions of Semilinear Parabolic Differential Equations, J. of Diff. Equations, 22 (1976), pp. 193-208. Zbl0341.35049MR450762
  9. [9] H. Kozono - M. Yamazaki, Navier-Stokes Equations in Exterior Donains, preprint 1995. MR1356738
  10. [10] O.A. Ladyzhenskaya, Mathematical Problems of Dynamics of Viscous Incompressible Fluid, Nauka, Moscow1970 (Russian). Zbl0215.29004
  11. [11] J.L. Lions - E. Magenes, Nonhomogeneous Boundary Value Problems and Applications I, Springer-Verlag, New York (1972). Zbl0223.35039
  12. [12] P. Maremonti, Asymptotic Stability Theorems for Viscous Fluid Motions in Exterior Domains, Rend. Sem. Mat. Univ. Padova, 71 (1984), pp. 35-72. Zbl0548.76047MR769428
  13. [13] K. Masuda, On the Stability of Incompressible Viscous Fluid Motions past Objects, J. of theMath. Soc. Japan, 27, 2 (1975), pp. 294-327. Zbl0303.76011MR440224
  14. [14] J. Neustupa, Stability of Solutions of Parabolic Equations by a Combination of the Semigroup Theory and the Energy Method, Proceedings of the Conference Navier-Stokes Equations and Related Nonlinear Problems held in Funchal, Madeira in May (1994). Editor A. Sequeira, Plenum Press, New York1995, pp. 11-22. Zbl0847.35018MR1373201
  15. [15] G. Prodi, Teoremi di tipo locale per il sistema di Navier-Stokes e stabilità delle soluzioni stazionarie, Rend. Sem. Mat. Univ. Padova, 32 (1962), pp. 374-397. Zbl0108.28602MR189354
  16. [16] D.H. Sattinger, TheMathematical Problem of Hydrodynamic Stability, J. of Math. and Mech., 19 (1970), pp. 797-817. Zbl0198.30401MR261182

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.