Some remarks on G -actions with sections

Elisa Gage Casini

Rendiconti del Seminario Matematico della Università di Padova (2000)

  • Volume: 103, page 157-169
  • ISSN: 0041-8994

How to cite

top

Casini, Elisa Gage. "Some remarks on $G$-actions with sections." Rendiconti del Seminario Matematico della Università di Padova 103 (2000): 157-169. <http://eudml.org/doc/108517>.

@article{Casini2000,
author = {Casini, Elisa Gage},
journal = {Rendiconti del Seminario Matematico della Università di Padova},
keywords = {-orbit; set of regular points; totally geodesic submanifold; nonpositive sectional curvatures; variationally complete; principal orbits; Weyl chambers; Weyl group},
language = {eng},
pages = {157-169},
publisher = {Seminario Matematico of the University of Padua},
title = {Some remarks on $G$-actions with sections},
url = {http://eudml.org/doc/108517},
volume = {103},
year = {2000},
}

TY - JOUR
AU - Casini, Elisa Gage
TI - Some remarks on $G$-actions with sections
JO - Rendiconti del Seminario Matematico della Università di Padova
PY - 2000
PB - Seminario Matematico of the University of Padua
VL - 103
SP - 157
EP - 169
LA - eng
KW - -orbit; set of regular points; totally geodesic submanifold; nonpositive sectional curvatures; variationally complete; principal orbits; Weyl chambers; Weyl group
UR - http://eudml.org/doc/108517
ER -

References

top
  1. [1] A. Alekseevsky - D. Alekseevsky, Asystatic G-manifolds, Proceedings of the workshop on Differential Geometry and Topology, Ed. R. Caddeo and F. Tricerri, World Scientific1993. Zbl0914.57023MR1339285
  2. [2] R. Bott, An application of the Morse theory to the topology of Lie groups, Bull. Soc. Math. Franc., 84 (1956), pp. 251-281. Zbl0073.40001MR87035
  3. [3] R. Bott - H. Samelson, Applications of the theory of Morse to symmetric spaces, Amer. J. Math., 80 (1958), pp. 964-1029. Zbl0101.39702MR105694
  4. [4] G.E. Bredon, Introduction to compact transformation groups, Academic Press, New York and London, 1972. Zbl0246.57017MR413144
  5. [5] L. Conlon, Variational completeness and K-transversal domains, J. Diff. Geom., 5 (1971), pp. 135-147. Zbl0213.48602MR295252
  6. [6] M.P. D, Geometria Riemanniana, Projeto Euclides, IMPA, Rio de Janeiro (1979). Zbl0505.53001
  7. [7] E. Heintze - R. Palais - L. Terng - G. Thorgbergsson, Hyperpolar actions and k-flat homogeneous spaces, Jour. Reine Angew. Math., 454 (1994), pp. 163-179. Zbl0804.53074MR1288683
  8. [8] S. Kobayashi - K. Nomizu, Foundations of Differential Geometry, vol. 1, Interscience publishers (1963). Zbl0119.37502MR152974
  9. [9] R.S. Palais - CH. L. TERNG, General theory of canonical forms, Trans. Am. Math. Soc., 300 (1987), pp. 771-789. Zbl0652.57023MR876478
  10. [10] R.S. Palais - Ch L. Terng, Critical Point Theory and Submanifold Geometry, LNM1353, Springer Verlag (1988). Zbl0658.49001MR972503
  11. [11] J. Szenthe, On the cut locus of a principal orbit in a Riemannian manifold of non-positive sectional curvature, Ann. Univ. Sci. Budapest. Eotvos. Sect. Math., 24 (1981), pp. 227-240. Zbl0484.53037MR878229
  12. [12] J. Szenthe, Orthogonally transversal submanifolds and the generalizations of the Weyl group, Per. Math. Hung., 15 (1984), pp. 281-299. Zbl0583.53035MR782429

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.