A common fixed point theorem for commuting expanding maps on nilmanifolds.
We define a distance between submanifolds of a riemannian manifold and show that, if a compact submanifold is not moved too much under the isometric action of a compact group , there is a -invariant submanifold -close to . The proof involves a procedure of averaging nearby submanifolds of riemannian manifolds in a symmetric way. The procedure combines averaging techniques of Cartan, Grove/Karcher, and de la Harpe/Karoubi with Whitney’s idea of realizing submanifolds as zeros of sections...
This work is a contribution to study residues of real characteristic classes of vector bundles on which act compact Lie groups. By using the Cech-De Rham complex, the realisation of the usual Thom isomorphism permites us to illustrate localisation techniques of some topological invariants.