Global bifurcation from the Fučik spectrum
Rendiconti del Seminario Matematico della Università di Padova (2000)
- Volume: 103, page 261-281
- ISSN: 0041-8994
Access Full Article
topHow to cite
topDambrosio, Walter. "Global bifurcation from the Fučik spectrum." Rendiconti del Seminario Matematico della Università di Padova 103 (2000): 261-281. <http://eudml.org/doc/108526>.
@article{Dambrosio2000,
author = {Dambrosio, Walter},
journal = {Rendiconti del Seminario Matematico della Università di Padova},
keywords = {multiparameter bifurcation; one-dimensional -Laplacian operator; Fucik spectrum},
language = {eng},
pages = {261-281},
publisher = {Seminario Matematico of the University of Padua},
title = {Global bifurcation from the Fučik spectrum},
url = {http://eudml.org/doc/108526},
volume = {103},
year = {2000},
}
TY - JOUR
AU - Dambrosio, Walter
TI - Global bifurcation from the Fučik spectrum
JO - Rendiconti del Seminario Matematico della Università di Padova
PY - 2000
PB - Seminario Matematico of the University of Padua
VL - 103
SP - 261
EP - 281
LA - eng
KW - multiparameter bifurcation; one-dimensional -Laplacian operator; Fucik spectrum
UR - http://eudml.org/doc/108526
ER -
References
top- [1] J.C. Alexander - S. Antman Stuart, Global and local behaviour of bifurcating multidimensional continua of solutions for multiparameter nonlinear eigenvalue problems, Arch. Rat. Mech. Anal., 76 (1981), pp. 339-354. Zbl0479.58005MR628173
- [2] A. Ambrosetti A. - J. Garcia-Azorero - I. Peral, Quasilinear equations with a multiple bifurcation, Diff. Int. Eq., 10 (1997), pp. 37-50. Zbl0879.35021MR1424797
- [3] A. Ambrosetti - G. Prodi, A primer of Nonlinear Analysis, Cambridge Studies in Adv. Math. Cambr.Univ. Press, 1993. Zbl0818.47059MR1225101
- [4] S. Antman Stuart, Nonlinear problems of elasticity, Applied Math. Sciences, 107, Springer-Verlag, 1995. Zbl0820.73002MR1323857
- [5] P.A. Binding - Y.X. Huang, Bifurcation from eigencurves of the p-laplacian, Diff. Int. Eq., 8, n. 2 (1995), pp. 415-428. Zbl0819.35108MR1296133
- [6] R.S. Cantrell, Global preservation of nodal structure in coupled systems of nonlinear Sturm-Liouville boundary value problems, Proc. A.M.S., 107 (1989), pp. 633-644. Zbl0683.34010MR975633
- [7] A. Capietto - W. Dambrosio, Multiplicity results for some two-point super-linear asymmetric boundary value problem, Nonlinear Analysis, TMA, 38, n. 7 (1999), pp. 869-896. Zbl0952.34012MR1711758
- [8] E.N. Dancer, On the Dirichlet problem for weakly nonlinear elliptic partial differential equations, Proc. Royal Soc. Edinburgh, 76A (1977), pp. 283-300. Zbl0351.35037MR499709
- [9] W. Dambrosio, Multiple solutions of weakly-coupled systems with p-Laplacian operators, Results Math., 36, n. 1-2 (1999), pp. 34-54. Zbl0942.34015MR1706481
- [10] M. Del Pino - M. Elgueta R.MANÁSEVICH, A homotopic deformation along p of a Leray-Schauder degree result and existence for (|u' |p-2 u' )' + + f(t, u) = 0, u(0) = u(T) = 0, p > 1, J. Differential Eq., 80 (1989), pp. 1-13. Zbl0708.34019MR1003248
- [11] P. Drábek, On the global bifurcation for a class of degenerate equations, Annali Mat. Pura Appl. (IV), 159 (1991), pp. 1-16. Zbl0814.34018MR1145086
- [12] P. Drábek P., Solvability and bifurcation of nonlinear equations, Pitman Res. Notes in Math. Series, 264. Longman Scient. & Tech., 1992. Zbl0753.34002MR1175397
- [13] P. Drábek P. - M. Kucera, Bifurcations of second order problems with jumping nonlinearities, Bull. Austr. Math. Society, 37 (1988), pp. 179-187. Zbl0631.34054MR930787
- [14] M.J. Esteban, Multiple solutions of semilinear elliptic problems in a ball, J. Differential Eq., 57 (1985), pp. 112-137. Zbl0519.35031MR788425
- [15] P.M. Fizpatrick - I. MASSABÒ - J. PEJSACHOWICZ, Global several-parameter bifurcation and continuation theorems: a unified approach via complementing maps, Math. Ann., 263 (1983), pp. 61-73. Zbl0519.58024MR697331
- [16] S. Fu, Solvability of Nonlinear equations and Boundary value problems, Math. and its Applications, 4. D. Reidel Publishing Company, 1980. Zbl0453.47035
- [17] Y.X. Huang - G. Metzen, The existence of solutions to a class of semilinear differential equations, Diff. Int. Eq., 8, n. 2 (1995), pp. 429-452. Zbl0818.34013MR1296134
- [18] J. Ize, Connected sets in multiparameter bifurcation, Nonlinear Analysis, TMA, 30, n. 6 (1997), 3763-3774 (Proc. 2nd World Congress of Nonlinear Analysis). Zbl0901.58009MR1602938
- [19] P.H. Rabinowitz, Some global results for nonlinear eigenvalue problems, J. Funct. Anal., 7 (1971), pp. 487-513. Zbl0212.16504MR301587
- [20] P.H. Rabinowitz, Some aspects of nonlinear eigenvalues problems, Rocky Mountain J. Math., 3 (1973), pp. 161-202. Zbl0255.47069MR320850
- [21] S.C. Welsh, A vector parameter global bifurcation result, Nonlinear Analysis, TMA, 25, n. 14 (1995), pp. 1425-1435. Zbl0901.47041MR1355731
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.