Global bifurcation from the Fučik spectrum

Walter Dambrosio

Rendiconti del Seminario Matematico della Università di Padova (2000)

  • Volume: 103, page 261-281
  • ISSN: 0041-8994

How to cite

top

Dambrosio, Walter. "Global bifurcation from the Fučik spectrum." Rendiconti del Seminario Matematico della Università di Padova 103 (2000): 261-281. <http://eudml.org/doc/108526>.

@article{Dambrosio2000,
author = {Dambrosio, Walter},
journal = {Rendiconti del Seminario Matematico della Università di Padova},
keywords = {multiparameter bifurcation; one-dimensional -Laplacian operator; Fucik spectrum},
language = {eng},
pages = {261-281},
publisher = {Seminario Matematico of the University of Padua},
title = {Global bifurcation from the Fučik spectrum},
url = {http://eudml.org/doc/108526},
volume = {103},
year = {2000},
}

TY - JOUR
AU - Dambrosio, Walter
TI - Global bifurcation from the Fučik spectrum
JO - Rendiconti del Seminario Matematico della Università di Padova
PY - 2000
PB - Seminario Matematico of the University of Padua
VL - 103
SP - 261
EP - 281
LA - eng
KW - multiparameter bifurcation; one-dimensional -Laplacian operator; Fucik spectrum
UR - http://eudml.org/doc/108526
ER -

References

top
  1. [1] J.C. Alexander - S. Antman Stuart, Global and local behaviour of bifurcating multidimensional continua of solutions for multiparameter nonlinear eigenvalue problems, Arch. Rat. Mech. Anal., 76 (1981), pp. 339-354. Zbl0479.58005MR628173
  2. [2] A. Ambrosetti A. - J. Garcia-Azorero - I. Peral, Quasilinear equations with a multiple bifurcation, Diff. Int. Eq., 10 (1997), pp. 37-50. Zbl0879.35021MR1424797
  3. [3] A. Ambrosetti - G. Prodi, A primer of Nonlinear Analysis, Cambridge Studies in Adv. Math. Cambr.Univ. Press, 1993. Zbl0818.47059MR1225101
  4. [4] S. Antman Stuart, Nonlinear problems of elasticity, Applied Math. Sciences, 107, Springer-Verlag, 1995. Zbl0820.73002MR1323857
  5. [5] P.A. Binding - Y.X. Huang, Bifurcation from eigencurves of the p-laplacian, Diff. Int. Eq., 8, n. 2 (1995), pp. 415-428. Zbl0819.35108MR1296133
  6. [6] R.S. Cantrell, Global preservation of nodal structure in coupled systems of nonlinear Sturm-Liouville boundary value problems, Proc. A.M.S., 107 (1989), pp. 633-644. Zbl0683.34010MR975633
  7. [7] A. Capietto - W. Dambrosio, Multiplicity results for some two-point super-linear asymmetric boundary value problem, Nonlinear Analysis, TMA, 38, n. 7 (1999), pp. 869-896. Zbl0952.34012MR1711758
  8. [8] E.N. Dancer, On the Dirichlet problem for weakly nonlinear elliptic partial differential equations, Proc. Royal Soc. Edinburgh, 76A (1977), pp. 283-300. Zbl0351.35037MR499709
  9. [9] W. Dambrosio, Multiple solutions of weakly-coupled systems with p-Laplacian operators, Results Math., 36, n. 1-2 (1999), pp. 34-54. Zbl0942.34015MR1706481
  10. [10] M. Del Pino - M. Elgueta R.MANÁSEVICH, A homotopic deformation along p of a Leray-Schauder degree result and existence for (|u' |p-2 u' )' + + f(t, u) = 0, u(0) = u(T) = 0, p &gt; 1, J. Differential Eq., 80 (1989), pp. 1-13. Zbl0708.34019MR1003248
  11. [11] P. Drábek, On the global bifurcation for a class of degenerate equations, Annali Mat. Pura Appl. (IV), 159 (1991), pp. 1-16. Zbl0814.34018MR1145086
  12. [12] P. Drábek P., Solvability and bifurcation of nonlinear equations, Pitman Res. Notes in Math. Series, 264. Longman Scient. & Tech., 1992. Zbl0753.34002MR1175397
  13. [13] P. Drábek P. - M. Kucera, Bifurcations of second order problems with jumping nonlinearities, Bull. Austr. Math. Society, 37 (1988), pp. 179-187. Zbl0631.34054MR930787
  14. [14] M.J. Esteban, Multiple solutions of semilinear elliptic problems in a ball, J. Differential Eq., 57 (1985), pp. 112-137. Zbl0519.35031MR788425
  15. [15] P.M. Fizpatrick - I. MASSABÒ - J. PEJSACHOWICZ, Global several-parameter bifurcation and continuation theorems: a unified approach via complementing maps, Math. Ann., 263 (1983), pp. 61-73. Zbl0519.58024MR697331
  16. [16] S. Fu, Solvability of Nonlinear equations and Boundary value problems, Math. and its Applications, 4. D. Reidel Publishing Company, 1980. Zbl0453.47035
  17. [17] Y.X. Huang - G. Metzen, The existence of solutions to a class of semilinear differential equations, Diff. Int. Eq., 8, n. 2 (1995), pp. 429-452. Zbl0818.34013MR1296134
  18. [18] J. Ize, Connected sets in multiparameter bifurcation, Nonlinear Analysis, TMA, 30, n. 6 (1997), 3763-3774 (Proc. 2nd World Congress of Nonlinear Analysis). Zbl0901.58009MR1602938
  19. [19] P.H. Rabinowitz, Some global results for nonlinear eigenvalue problems, J. Funct. Anal., 7 (1971), pp. 487-513. Zbl0212.16504MR301587
  20. [20] P.H. Rabinowitz, Some aspects of nonlinear eigenvalues problems, Rocky Mountain J. Math., 3 (1973), pp. 161-202. Zbl0255.47069MR320850
  21. [21] S.C. Welsh, A vector parameter global bifurcation result, Nonlinear Analysis, TMA, 25, n. 14 (1995), pp. 1425-1435. Zbl0901.47041MR1355731

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.