A nonlinear two-species oscillatory system: bifurcation and stability analysis.
We prove that the lowest upper bound for the number of isolated zeros of the Abelian integrals associated to quadratic Hamiltonian vector fields having a center and an invariant straight line after quadratic perturbations is one.
Let be the real vector space of Abelian integralswhere is a fixed real polynomial, is an arbitrary real polynomial and , , is the interior of the oval of which surrounds the origin and tends to it as . We prove that if is a semiweighted homogeneous polynomial with only Morse critical points, then is a free finitely generated module over the ring of real polynomials , and compute its rank. We find the generators of in the case when is an arbitrary cubic polynomial. Finally we...
We study the behavior of a continuous flow near a boundary. We prove that if φ is a flow on for which is an invariant set and S ⊂ ∂E is an isolated invariant set, with non-zero homological Conley index, then there exists an x in EE such that either α(x) or ω(x) is in S. We also prove an index theorem for a flow on .
In this paper we consider a class of perturbation of a Hamiltonian cubic system with 9 finite critical points. Using detection functions, we present explicit formulas for the global and local bifurcations of the flow. We exhibit various patterns of compound eyes of limit cycles. These results are concerned with the weakened Hilbert's 16th problem posed by V. I. Arnold in 1977.
It is proved in this paper that the maximum number of limit cycles of system⎧ dx/dt = y⎨⎩ dy/dt = kx - (k + 1)x2 + x3 + ε(α + βx + γx2)yis equal to two in the finite plane, where k > (11 + √33) / 4 , 0 < |ε| << 1, |α| + |β| + |γ| ≠ 0. This is partial answer to the seventh question in [2], posed by Arnold.