Regulators of rank one quadratic twists
Christophe Delaunay[1]; Xavier-François Roblot[1]
- [1] Université de Lyon Université Lyon 1 INSA de Lyon, F-69621 École Centrale de Lyon CNRS, UMR5208, Institut Camille Jordan 43 blvd du 11 novembre 1918 F-69622 Villeurbanne-Cedex, France
Journal de Théorie des Nombres de Bordeaux (2008)
- Volume: 20, Issue: 3, page 601-624
- ISSN: 1246-7405
Access Full Article
topAbstract
topHow to cite
topDelaunay, Christophe, and Roblot, Xavier-François. "Regulators of rank one quadratic twists." Journal de Théorie des Nombres de Bordeaux 20.3 (2008): 601-624. <http://eudml.org/doc/10853>.
@article{Delaunay2008,
abstract = {We investigate the regulators of elliptic curves with rank 1 in some families of quadratic twists of a fixed elliptic curve. In particular, we formulate some conjectures on the average size of these regulators. We also describe an efficient algorithm to compute explicitly some of the invariants of a rank one quadratic twist of an elliptic curve (regulator, order of the Tate-Shafarevich group, etc.) and we discuss the numerical data that we obtain and compare it with our predictions.},
affiliation = {Université de Lyon Université Lyon 1 INSA de Lyon, F-69621 École Centrale de Lyon CNRS, UMR5208, Institut Camille Jordan 43 blvd du 11 novembre 1918 F-69622 Villeurbanne-Cedex, France; Université de Lyon Université Lyon 1 INSA de Lyon, F-69621 École Centrale de Lyon CNRS, UMR5208, Institut Camille Jordan 43 blvd du 11 novembre 1918 F-69622 Villeurbanne-Cedex, France},
author = {Delaunay, Christophe, Roblot, Xavier-François},
journal = {Journal de Théorie des Nombres de Bordeaux},
keywords = {elliptic curves; quadratic twists},
language = {eng},
number = {3},
pages = {601-624},
publisher = {Université Bordeaux 1},
title = {Regulators of rank one quadratic twists},
url = {http://eudml.org/doc/10853},
volume = {20},
year = {2008},
}
TY - JOUR
AU - Delaunay, Christophe
AU - Roblot, Xavier-François
TI - Regulators of rank one quadratic twists
JO - Journal de Théorie des Nombres de Bordeaux
PY - 2008
PB - Université Bordeaux 1
VL - 20
IS - 3
SP - 601
EP - 624
AB - We investigate the regulators of elliptic curves with rank 1 in some families of quadratic twists of a fixed elliptic curve. In particular, we formulate some conjectures on the average size of these regulators. We also describe an efficient algorithm to compute explicitly some of the invariants of a rank one quadratic twist of an elliptic curve (regulator, order of the Tate-Shafarevich group, etc.) and we discuss the numerical data that we obtain and compare it with our predictions.
LA - eng
KW - elliptic curves; quadratic twists
UR - http://eudml.org/doc/10853
ER -
References
top- J. A. Antoniadis, M. Bungert, G. Frey, Properties of twists of elliptic curves. J. Reine Angew. Math. 405 (1990), 1–28. Zbl0709.14020MR1040993
- H. Cohen, A course in Computational Algebraic Number Theory. Graduate texts in Math. 138, Springer-Verlag, New-York (1993). Zbl0786.11071MR1228206
- H. Cohen, Diophantine equations, -adic Numbers and -functions. Graduate Texts in Mathematics 239 and 240, Springer-Verlag. MR2312337
- J. B. Conrey, J. P. Keating, M. O. Rubinstein, N. C. Snaith, On the frequency of vanishing of quadratic twists of modular -functions. Number theory for the millennium, I (Urbana, IL, 2000), 301–315, A. K. Peters, Natick, MA, 2002. Zbl1044.11035MR1956231
- J. B. Conrey, D. W. Farmer J. P. Keating, M. O. Rubinstein, N. C. Snaith, Integral moments of -functions. Proc. London Math. Soc. (3) 91 (2005), no. 1, 33–104. Zbl1075.11058MR2149530
- J. B. Conrey, M. O. Rubinstein, N. C. Snaith, M. Watkins, Discretisation for odd quadratic twists, in Ranks of elliptic curves and random matrix theory, ed. J. B. Conrey, D. W. Farmer, F. Mezzadri and N. C. Snaith, London Mathematical Society, Lecture notes series 341, 201–214. Zbl1193.11064MR2322346
- C. Delaunay, Heuristics on class groups and on Tate-Shafarevitch groups, in Ranks of elliptic curves and random matrix theory, ed. J. B. Conrey, D. W. Farmer, F. Mezzadri and N. C. Snaith, London Mathematical Society, Lecture notes series 341, 323–340. Zbl1231.11129MR2322335
- C. Delaunay, Moments of the Orders of Tate-Shafarevich groups. International Journal of Number Theory, 1 (2005), no. 2, 243–264. Zbl1082.11042MR2173383
- C. Delaunay, S. Duquesne, Numerical Investigations Related to the Derivatives of the -series of Certain Elliptic Curves. Exp. Math. 12 (2003), no. 3, 311–317. Zbl1083.11041MR2034395
- N. Elkies, Heegner point computations. Algorithmic number theory (Ithaca, NY, 1994), 122–133, Lecture Notes in Comput. Sci., 877, Springer, Berlin, 1994. Zbl0837.14044MR1322717
- Y. Hayashi, The Rankin’s -function and Heegner points for general discriminants. Proc. Japan Acad. Ser. A Math. Sci. 71 (1995), no. 2, 30–32. Zbl0853.11041MR1326793
- J. P. Keating, N. C. Snaith, Random matrix theory and -functions at . Comm. Math. Phys. 214 (2000), 91–110. Zbl1051.11047MR1794267
- M. Krir, À propos de la conjecture de Lang sur la minoration de la hauteur de Néron-Tate pour les courbes elliptiques sur . Acta Arithmetica, C (2001), no. 1, 1–16. Zbl0981.11021MR1864622
- B. Gross, D. Zagier, Heegner points and derivatives of L-series. Invent. Math. 84, (1986), 225–320. Zbl0608.14019MR833192
- C. Batut, K. Belabas, D. Bernardi, H. Cohen, M. Olivier, PARI/GP System, available at http://pari.math.u-bordeaux.fr/
- P. Quattrini, On the distribution of analytic values on quadratic twists of elliptic curves. Experiment. Math. 15 (2006), no. 3, 355–365. Zbl1204.11080MR2264472
- G. Ricotta, T. Vidick, Hauteur Asymptotique des points de Heegner. To appear in Canad. J. Math. Zbl1195.11082MR2462452
- M. Rubinstein, Numerical data, available at http://www.math.uwaterloo.ca/~mrubinst/
- J. H. Silverman, The Arithmetic of Elliptic Curves. Graduate text in Math. 106, Springer-Verlag, New-York (1986). Zbl0585.14026MR817210
- N. C. Snaith, Derivatives of random matrix characteristic polynomials with applications to elliptic curves. J. Phys. A 38 (2005), 48, 10345–10360. Zbl1086.15026MR2185940
- M. Watkins, Extra rank for odd parity twists, available at http://www.maths.bris.ac.uk/~mamjw/papers/papers.html
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.