Regulators of rank one quadratic twists
Christophe Delaunay[1]; Xavier-François Roblot[1]
- [1] Université de Lyon Université Lyon 1 INSA de Lyon, F-69621 École Centrale de Lyon CNRS, UMR5208, Institut Camille Jordan 43 blvd du 11 novembre 1918 F-69622 Villeurbanne-Cedex, France
Journal de Théorie des Nombres de Bordeaux (2008)
- Volume: 20, Issue: 3, page 601-624
- ISSN: 1246-7405
Access Full Article
topAbstract
topHow to cite
topReferences
top- J. A. Antoniadis, M. Bungert, G. Frey, Properties of twists of elliptic curves. J. Reine Angew. Math. 405 (1990), 1–28. Zbl0709.14020MR1040993
- H. Cohen, A course in Computational Algebraic Number Theory. Graduate texts in Math. 138, Springer-Verlag, New-York (1993). Zbl0786.11071MR1228206
- H. Cohen, Diophantine equations, -adic Numbers and -functions. Graduate Texts in Mathematics 239 and 240, Springer-Verlag. MR2312337
- J. B. Conrey, J. P. Keating, M. O. Rubinstein, N. C. Snaith, On the frequency of vanishing of quadratic twists of modular -functions. Number theory for the millennium, I (Urbana, IL, 2000), 301–315, A. K. Peters, Natick, MA, 2002. Zbl1044.11035MR1956231
- J. B. Conrey, D. W. Farmer J. P. Keating, M. O. Rubinstein, N. C. Snaith, Integral moments of -functions. Proc. London Math. Soc. (3) 91 (2005), no. 1, 33–104. Zbl1075.11058MR2149530
- J. B. Conrey, M. O. Rubinstein, N. C. Snaith, M. Watkins, Discretisation for odd quadratic twists, in Ranks of elliptic curves and random matrix theory, ed. J. B. Conrey, D. W. Farmer, F. Mezzadri and N. C. Snaith, London Mathematical Society, Lecture notes series 341, 201–214. Zbl1193.11064MR2322346
- C. Delaunay, Heuristics on class groups and on Tate-Shafarevitch groups, in Ranks of elliptic curves and random matrix theory, ed. J. B. Conrey, D. W. Farmer, F. Mezzadri and N. C. Snaith, London Mathematical Society, Lecture notes series 341, 323–340. Zbl1231.11129MR2322335
- C. Delaunay, Moments of the Orders of Tate-Shafarevich groups. International Journal of Number Theory, 1 (2005), no. 2, 243–264. Zbl1082.11042MR2173383
- C. Delaunay, S. Duquesne, Numerical Investigations Related to the Derivatives of the -series of Certain Elliptic Curves. Exp. Math. 12 (2003), no. 3, 311–317. Zbl1083.11041MR2034395
- N. Elkies, Heegner point computations. Algorithmic number theory (Ithaca, NY, 1994), 122–133, Lecture Notes in Comput. Sci., 877, Springer, Berlin, 1994. Zbl0837.14044MR1322717
- Y. Hayashi, The Rankin’s -function and Heegner points for general discriminants. Proc. Japan Acad. Ser. A Math. Sci. 71 (1995), no. 2, 30–32. Zbl0853.11041MR1326793
- J. P. Keating, N. C. Snaith, Random matrix theory and -functions at . Comm. Math. Phys. 214 (2000), 91–110. Zbl1051.11047MR1794267
- M. Krir, À propos de la conjecture de Lang sur la minoration de la hauteur de Néron-Tate pour les courbes elliptiques sur . Acta Arithmetica, C (2001), no. 1, 1–16. Zbl0981.11021MR1864622
- B. Gross, D. Zagier, Heegner points and derivatives of L-series. Invent. Math. 84, (1986), 225–320. Zbl0608.14019MR833192
- C. Batut, K. Belabas, D. Bernardi, H. Cohen, M. Olivier, PARI/GP System, available at http://pari.math.u-bordeaux.fr/
- P. Quattrini, On the distribution of analytic values on quadratic twists of elliptic curves. Experiment. Math. 15 (2006), no. 3, 355–365. Zbl1204.11080MR2264472
- G. Ricotta, T. Vidick, Hauteur Asymptotique des points de Heegner. To appear in Canad. J. Math. Zbl1195.11082MR2462452
- M. Rubinstein, Numerical data, available at http://www.math.uwaterloo.ca/~mrubinst/
- J. H. Silverman, The Arithmetic of Elliptic Curves. Graduate text in Math. 106, Springer-Verlag, New-York (1986). Zbl0585.14026MR817210
- N. C. Snaith, Derivatives of random matrix characteristic polynomials with applications to elliptic curves. J. Phys. A 38 (2005), 48, 10345–10360. Zbl1086.15026MR2185940
- M. Watkins, Extra rank for odd parity twists, available at http://www.maths.bris.ac.uk/~mamjw/papers/papers.html