### A computer algorithm for finding new euclidean number fields

This article describes a computer algorithm which exhibits a sufficient condition for a number field to be euclidean for the norm. In the survey [3] p 405, Franz Lemmermeyer pointed out that 743 number fields where known (march 1994) to be euclidean (the first one, $\mathbb{Q}$, discovered by Euclid, three centuries B.C.!). In the first months of 1997, we found more than 1200 new euclidean number fields of degree 4, 5 and 6 with a computer algorithm involving classical lattice properties of the embedding of...