A third look at weight diagrams
Rendiconti del Seminario Matematico della Università di Padova (2000)
- Volume: 104, page 201-250
- ISSN: 0041-8994
Access Full Article
topHow to cite
topVavilov, Nikolai. "A third look at weight diagrams." Rendiconti del Seminario Matematico della Università di Padova 104 (2000): 201-250. <http://eudml.org/doc/108535>.
@article{Vavilov2000,
author = {Vavilov, Nikolai},
journal = {Rendiconti del Seminario Matematico della Università di Padova},
keywords = {minimal modules; Chevalley groups; Freudenthal transvections; weight diagrams; fundamental representations; highest weight vectors},
language = {eng},
pages = {201-250},
publisher = {Seminario Matematico of the University of Padua},
title = {A third look at weight diagrams},
url = {http://eudml.org/doc/108535},
volume = {104},
year = {2000},
}
TY - JOUR
AU - Vavilov, Nikolai
TI - A third look at weight diagrams
JO - Rendiconti del Seminario Matematico della Università di Padova
PY - 2000
PB - Seminario Matematico of the University of Padua
VL - 104
SP - 201
EP - 250
LA - eng
KW - minimal modules; Chevalley groups; Freudenthal transvections; weight diagrams; fundamental representations; highest weight vectors
UR - http://eudml.org/doc/108535
ER -
References
top- [A] Abe E., Chevalley groups over local rings, Tôhoku Math. J., 21, no. 3 (1969), pp. 474-494. Zbl0188.07201MR258837
- [A1] Aschbacher M., The 27-dimensional module for E6, I, Inv. Math., 89, no. 1 (1987), pp. 159-195. Zbl0629.20018MR892190
- [A2] Aschbacher M., Some multilinear forms with large isometry groups, Geom. dedic., 25, no. 1-3 (1988), pp. 417-465. Zbl0646.20033MR925846
- [A2] Aschbacher M., The geometry of trilinear forms, Finite Geometries, Buildings and Related topics, Oxford Univ. Press, 1990, pp. 75-84. Zbl0752.11020MR1072156
- [ABS] Azad H. - Barry M. - Seitz G.M., On the structure of parabolic subgroups, Commun. Algebra, 18 (1990), pp. 551-562. Zbl0717.20029MR1047327
- [BV] Bak A. - Vavilov N.A., Structure of hyperbolic unitary groups I, Elementary subgroup, Algebra Colloquim, 7, no. 2 (2000), pp. 159-196. Zbl0963.20024MR1810843
- [BE] Baston R.J. - Eastwood M.G., The Penrose transform, its interactions with representation theory, Clarendon Press, 1984. Zbl0726.58004MR1038279
- [B] Borel A., Properties and linear representations of Chevalley groups, Lecture Notes Math., 131 (1970), pp. 1-55. Zbl0197.30501MR258838
- [B1] Bourbaki N., Groupes et algèbres de Lie. Ch. 4-6, Hermann, Paris, 1968. Zbl0483.22001MR240238
- [B2] Bourbaki N., Groupes et algèbres de Lie. Ch. 7, 8, Hermann, Paris, 1975. MR453824
- [BCN] Brouwer A.E. - Cohen A.M. - Neumaier A., Distance regular graphs, Springer-Verlag, N. Y. et al., 1989. Zbl0747.05073MR1002568
- [Br] Brown R.B., Groups of type E7, J. reine angew. Math., 236, no. 1 (1969), 79-102. Zbl0182.04703MR248185
- [C] Carter R.W., Simple groups of Lie type, Wiley, London et al., 1972. Zbl0248.20015MR407163
- [CC1] Cohen A.M. - Cooperstein B.N., The 2-space of the standard E6(q)-mudule, Geom. dedic., 25, no. 1-3 (1988), pp. 467-480. Zbl0643.20025MR925847
- [CC2] Cohen A.M. - Cushman R.H., Gröbner bases and standard monomial theory, Computational algebraic geometry, Progess in Mathematics109, Birkhäuser, 1993, pp. 41-60. Zbl0808.13010MR1230857
- [CW] Cohen A.M. - Wales D.B., Finite subgroups of F4(C) and E6(C), Proc. London Math. Soc., 74, no. 1 (1997), pp. 105-150. Zbl0874.20032MR1416728
- [C1] Cooperstein B.N., The geometry of root subgroups in exceptional groups, Geom. dedic., 8, no. 3 (1978), pp. 317-381; 15, no. 1 (1983), pp. 1-45. Zbl0536.20010MR550374
- [C2] Cooperstein B.N., The fifty-six-dimensional module for E 7. A four form for E7, J. Algebra, 173 (1995), pp. 361-389. Zbl0838.20047MR1325780
- [C3] Cooperstein B N., Four forms I. Basic concepts and examples (to appear).
- [CIK] Curtis C.W. - Iwahori N. - Kilmoyer R., Hecke algebras and characters of parabolic type of finite groups with (B, N)- pairs, Publ. Math. Inst. Hautes Et. Sci., no. 40 (1971), pp. 81-116. Zbl0254.20004MR347996
- [DMV] Di Martino L. - Vavilov N.A., (2, 3)-generation of E6(q) (to appear).
- [FF] Faulkner J.R. - Ferrar J.C., Exceptional Lie algebras and related algebraic and geometric structures, Bull. London Math. Soc., 9 (1977), pp. 1-35. Zbl0349.17004MR444729
- [GS] Gilkey P. - Seitz G., Some representations of exceptional Lie algebras, Geom. dedic., 25, no. 1-3 (1988), pp. 407-416. Zbl0661.17005MR925845
- [G] Griess R.L., A Moufang loop, the exceptional Jordan algebra and a cubic form in 27 variables, J. Algebra, 13 (1990), pp. 281-293. Zbl0718.17028MR1055009
- [HOM] Hahn A. - O'Meara O.T., The classical groups and K-theory, Springer-Verlag, N. Y. et al., 1989. Zbl0683.20033MR1007302
- [Ha] Haris S.J., Some irreducible representations of exceptional algebraic groups, Amer. J. Math., 93, no. 1 (1971), pp. 75-106. Zbl0215.39603MR279103
- [Hr] Hartshorn R., Algebraic Geometry, Springer-Verlag, N. Y. et al., 1977. MR463157
- [Hé] Hée J.-Y., Groupes de Chevalley et groupes classiques, Publ. Math. Univ.Paris VII, 17 (1984), pp. 1-54. Zbl0583.17005MR772212
- [Hi1] Hiller H., Combinatorics and intersections of Schubert varieties, Comment. Math. Helv., 57 (1982), pp. 41-59. Zbl0501.14030MR672845
- [Hi1] Hiller H., Geometry of Coxeter groups, Pitman, Boston and London, 1982. Zbl0483.57002MR649068
- [Ho] Howe R., Perspectives on invariant theory: Schur duality, multiplicity-free actions and beyond, Israel Math. Conf. Proc. (to appear). Zbl0844.20027MR1321638
- [H] Humphreys J.E., Introduction to Lie algebras and representation theory, Springer, Berlin et al., 1980. Zbl0254.17004MR499562
- [J] Joseph A., Quantum groups and their primitive ideals, Springer-Verlag, N.Y. et al., 1995. Zbl0808.17004MR1315966
- [K1] Kashiwara M., Crystallizing the q-analogue of universal enveloping algebra, Comm. Math. Phys., 133 (1990), pp. 249-260. Zbl0724.17009MR1090425
- [K2] Kashiwara M., On crystal base of q-analogue of universal envoloping algebras, Duke Math. J., 63 (1991), pp. 456-516. Zbl0739.17005MR1115118
- [K3] Kashiwara M., On crystal bases, Canadian Math. Soc. Conf. Proc., 16 (1995), pp. 155-197. Zbl0851.17014MR1357199
- [KN] Kashiwara M. - Nakashima T., Crystal graphs for representations of the q-analogue of classical Lie algebras, J. Algebra, 165 (1994), pp. 295-345. Zbl0808.17005MR1273277
- [LS1] Lakshmibai V. - Seshadri C.S., Geometry of G/P. V, J. Algebra, 100 (1986), pp. 462-557. Zbl0618.14026MR840589
- [LS1] Lakshmibai V. - Seshadri C.S., Standard monomial theory, Hyderabad Conference on Algebraic Groups, Manoj Prakashan, Madras, 1991, pp. 279-323. Zbl0785.14028MR1131317
- [LW] Lakshmibai V. - Weyman J., Multiplicities of points on a Schubert variety in a minuscule G/P, Adv. Math., 84, no. 2 (1990), pp. 179-208. Zbl0729.14037MR1080976
- [Li] Lichtenstein W., A system of quadrics describing the orbit of the highest weight vector, Proc. Amer. Math. Soc., 84, no. 4 (1982), pp. 605-608. Zbl0501.22017MR643758
- [LS] Liebeck W.M. - Saxl J., On the orders of the maximal subgroups of the finite exceptional groupes of Lie type, Proc. London Math. Soc., 55 (1987), pp. 299-330. Zbl0627.20026MR896223
- [Li1] Littelmann P., A Littlewood-Richardson rule for symmetrizable Kac-Moody algebras, Invent. Math., 116 (1994), 229-246. Zbl0805.17019MR1253196
- [Li2] Littelmann P., Crystal graphs and Young tableau, J. Algebra, 175, no. 1 (1995), pp. 65-87. Zbl0831.17004MR1338967
- [Li3] Littelmann P., Path and root operators in representation theory, Ann. Math., 142 (1995), pp. 499-525. Zbl0858.17023MR1356780
- [L1] Lusztig G., Canonical bases arising from quantized enveloping algebras, J. Amer. Math. Soc., 3 (1990), pp. 447-498. Zbl0703.17008MR1035415
- [L2] Lusztig G., Canonical bases arising from quantized envoloping algebras. II, Progr. Theor. Physics, 102 (1990), pp. 175-202. Zbl0776.17012MR1182165
- [L2] Lusztig G., Introduction to quantum groups, Birkhäuser, Boston et al., 1993. Zbl0788.17010MR1227098
- [Mn] Manin Yu. I., Cubic forms: algebra, geometry, arithmetic, North-Holland, Amsterdam-London, 1974. Zbl0582.14010MR833513
- [Mr] Mars J.G.M., Les nombers de Tamagawa de certains groupes exceptionnels, Bull. Soc. Math. France, 94 (1966), pp. 97-140. Zbl0146.04601MR213363
- [Ma] Marsh R.J., On the adjoint module of a quantum group, Preprint University Warwick, no. 79 (1994), pp. 1-12.
- [M] Matsumoto H., Sur les sous-groupes arithmétiques des groupes semisimples deployés, Ann. Sci. Ecole Norm. Sup., 4ème sér., 2 (1969), pp. 1-62. Zbl0261.20025MR240214
- [MPS] Michel L. - Patera J. - Sharp R., The Demazure-Tits subgroup of a simple Lie group, J. Math. Phys., 29 no. 4 (1988), pp. 777-796. Zbl0661.22007MR940338
- [PR] Parker C. - Röhrle G., Minuscule Representations, Preprint Universität Bielefeld, no. 72 (1993).
- [Pl1] Plotkin E.B., Stability theorems for K1-functors for Chevalley groups, Proc. Conf. Nonassociative algebras and related topics. Hiroshima- 1990, World Scientific, London et al., 1991, pp. 203-217. Zbl0801.20019MR1150261
- [Pl2] Plotkin E.B., Surjective stabilization for K1-functors for some exceptional Chevalley groups, J. Soviet Math., 64, no. 1 (1993), pp. 751-767. Zbl0802.19003MR1164860
- [Pl3] Plotkin E.B., On a problem of H. Bass for Chevalley groups of type E7, Y. Algebra, 210, no. 1 (1998), pp. 67-85. Zbl0918.20039
- [PSV] Plotkin E.B. - Semenov A.A. - Vavilov N.A., Visual basic representations: an atlas, Int. J. Algebra and Computations, 8, no. (1998), pp. 61-97. Zbl0957.17006MR1492062
- [P1] Proctor R.A., Bruhat lattices, plane partition generating functions, and minuscule representations, Europ. J. Combinatorics, 5 (1984), pp. 331-350. Zbl0562.05003MR782055
- [P2] Proctor R.A., A Dynkin diagram classification theorem arising from a combinatorial problem, Adv. Math., 62, no. 2 (1986), pp. 103-117. Zbl0639.06006MR865833
- [Sch] Scharlau R., Buildings, Handbook of Incidence Geometry, North Jolland, Amsterdam, 1995, pp. 477-645. Zbl0841.51005MR1360726
- [Se] Seshadri C.S., Geometry of G/P. I. Standard monomial theory for minuscule P, C. P. Ramanujan: a tribute, Tata Press, Bombay, 1978, pp. 207-239. Zbl0447.14010MR541023
- [S1] Springer T.A., On the geometric algebra of the projective octave plane, Proc. Nederl. Akad. Wetensch., 65 (1962), pp. 451-468. Zbl0113.35903MR142045
- [S2] Springer T.A., Jordan algebras and algebraic groups, Springer-Verlag, N. Y. et al., 1973. Zbl0259.17003MR379618
- [S3] Springer T.A., Linear algebraic groups, Fundam. trends in Math., 55 (1989), pp. 5-136 (in Russian, English translation in Springer-Verlag). Zbl0789.20044MR1100484
- [St1] Stein M.R., Generators, relations and coverings of Chevalley groups over commutative rings, Amer. J. Math., 93, no. 4 (1971), pp. 965-1004. Zbl0246.20034MR322073
- [St2] Stein M.R., Stability theorems for K1, K 2 and related functors modeled on Chevalley groups, Japan J. Math., 4, no. 1 (1978), pp. 77-108. Zbl0403.18010MR528869
- [S] Steinberg R., Lectures on Chevalley groups, Yale University, 1968. MR466335
- [St] Stembridge J.R., On minuscule representations, plane partitions and involutions in complex Lie groups, Duke J. Math., 73, no. 2 (1994), pp. 469-490. Zbl0805.22006MR1262215
- [SV] Stepanov A.V. - Vavilov N.A., Decomposition of transvections: a theme with variations, K-theory, 19 (2000), pp. 109-153. Zbl0944.20031MR1740757
- [Te] Testerman D.M., A1-type overgroups of elements of order p in semisimple algebraic groups and associated finite groups, J. Algebra, 177, no. 1 (1995), pp. 34-76. Zbl0857.20025MR1356359
- [T] Tits J., Normalisateurs de tores. I. Groupes de Coxeter étendus, J. Algebra, 4, no. 1 (1966), pp. 96-116. Zbl0145.24703MR206117
- [V1] Vavilov N.A., On the problem of normality of the elementary subgroup in a Chevalley group, Algebraic and Discrete Systems, Ivanovo Univ., 1988, pp. 7-25 (in Russian). Zbl0816.20041MR1244582
- [V2] Vavilov N.A., Structure of Chevalley groups over commutative rings, Proc. Conf. Nonassociative algebras and related topics. Hiroshima- 1990, World Scientific, London et al., 1991, pp. 219-335. Zbl0799.20042MR1150262
- [V3] Vavilov N.A., Do it yourself structure constants for Lie algebras of type El, Preprint Universität Bielefeld, no. 35 (1993), pp. 1-42. Zbl1062.17004
- [V4] Vavilov N.A., Intermediate subgroups in Chevalley groups, Proc. Conf. Groups of Lie Type and their Geometries (Como - 1993), Cambridge Univ. Press, 1995, pp. 233-280. Zbl0879.20020MR1320525
- [V5] Vavilov N A., The ubiquity of microweights (to appear).
- [V6] Vavilov N.A., Can one see the signs of the structure constants ?, St. Petersburg J. Math. (In Russian, to appear).
- [V7] Vavilov N A., Geometry of the minimal modules for Chevalley groups of types E6 and E7 (to appear).
- [VPe] Vavilov N.A. - Perelman E. Ya, Transvections in polyvector representations, St. Petersburg J. Math. (In Russian, to appear).
- [VP] Vavilov N.A. - Plotkin E.B., Chevalley groups over commutative rings. I. Elementary calculations, Acta Applicandae Math., 45, no. 1 (1996), pp. 73-113. Zbl0861.20044MR1409655
- [VP] Vavilov N.A. - Plotkin E.B. - Stepanov A.V., Calculations in Chevalley groups over commutative rings, Soviet Math. Dokl., 40 no. 1 (1989), pp. 145-147. Zbl0795.20028MR1020667
- [W] Waterhouse W.C., Automorphisms of det(xij): a group scheme approach, Adv. Math., 65, no. 2 (1987), pp. 171-203. Zbl0651.14028MR900267
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.