A third look at weight diagrams

Nikolai Vavilov

Rendiconti del Seminario Matematico della Università di Padova (2000)

  • Volume: 104, page 201-250
  • ISSN: 0041-8994

How to cite


Vavilov, Nikolai. "A third look at weight diagrams." Rendiconti del Seminario Matematico della Università di Padova 104 (2000): 201-250. <http://eudml.org/doc/108535>.

author = {Vavilov, Nikolai},
journal = {Rendiconti del Seminario Matematico della Università di Padova},
keywords = {minimal modules; Chevalley groups; Freudenthal transvections; weight diagrams; fundamental representations; highest weight vectors},
language = {eng},
pages = {201-250},
publisher = {Seminario Matematico of the University of Padua},
title = {A third look at weight diagrams},
url = {http://eudml.org/doc/108535},
volume = {104},
year = {2000},

AU - Vavilov, Nikolai
TI - A third look at weight diagrams
JO - Rendiconti del Seminario Matematico della Università di Padova
PY - 2000
PB - Seminario Matematico of the University of Padua
VL - 104
SP - 201
EP - 250
LA - eng
KW - minimal modules; Chevalley groups; Freudenthal transvections; weight diagrams; fundamental representations; highest weight vectors
UR - http://eudml.org/doc/108535
ER -


  1. [A] Abe E., Chevalley groups over local rings, Tôhoku Math. J., 21, no. 3 (1969), pp. 474-494. Zbl0188.07201MR258837
  2. [A1] Aschbacher M., The 27-dimensional module for E6, I, Inv. Math., 89, no. 1 (1987), pp. 159-195. Zbl0629.20018MR892190
  3. [A2] Aschbacher M., Some multilinear forms with large isometry groups, Geom. dedic., 25, no. 1-3 (1988), pp. 417-465. Zbl0646.20033MR925846
  4. [A2] Aschbacher M., The geometry of trilinear forms, Finite Geometries, Buildings and Related topics, Oxford Univ. Press, 1990, pp. 75-84. Zbl0752.11020MR1072156
  5. [ABS] Azad H. - Barry M. - Seitz G.M., On the structure of parabolic subgroups, Commun. Algebra, 18 (1990), pp. 551-562. Zbl0717.20029MR1047327
  6. [BV] Bak A. - Vavilov N.A., Structure of hyperbolic unitary groups I, Elementary subgroup, Algebra Colloquim, 7, no. 2 (2000), pp. 159-196. Zbl0963.20024MR1810843
  7. [BE] Baston R.J. - Eastwood M.G., The Penrose transform, its interactions with representation theory, Clarendon Press, 1984. Zbl0726.58004MR1038279
  8. [B] Borel A., Properties and linear representations of Chevalley groups, Lecture Notes Math., 131 (1970), pp. 1-55. Zbl0197.30501MR258838
  9. [B1] Bourbaki N., Groupes et algèbres de Lie. Ch. 4-6, Hermann, Paris, 1968. Zbl0483.22001MR240238
  10. [B2] Bourbaki N., Groupes et algèbres de Lie. Ch. 7, 8, Hermann, Paris, 1975. MR453824
  11. [BCN] Brouwer A.E. - Cohen A.M. - Neumaier A., Distance regular graphs, Springer-Verlag, N. Y. et al., 1989. Zbl0747.05073MR1002568
  12. [Br] Brown R.B., Groups of type E7, J. reine angew. Math., 236, no. 1 (1969), 79-102. Zbl0182.04703MR248185
  13. [C] Carter R.W., Simple groups of Lie type, Wiley, London et al., 1972. Zbl0248.20015MR407163
  14. [CC1] Cohen A.M. - Cooperstein B.N., The 2-space of the standard E6(q)-mudule, Geom. dedic., 25, no. 1-3 (1988), pp. 467-480. Zbl0643.20025MR925847
  15. [CC2] Cohen A.M. - Cushman R.H., Gröbner bases and standard monomial theory, Computational algebraic geometry, Progess in Mathematics109, Birkhäuser, 1993, pp. 41-60. Zbl0808.13010MR1230857
  16. [CW] Cohen A.M. - Wales D.B., Finite subgroups of F4(C) and E6(C), Proc. London Math. Soc., 74, no. 1 (1997), pp. 105-150. Zbl0874.20032MR1416728
  17. [C1] Cooperstein B.N., The geometry of root subgroups in exceptional groups, Geom. dedic., 8, no. 3 (1978), pp. 317-381; 15, no. 1 (1983), pp. 1-45. Zbl0536.20010MR550374
  18. [C2] Cooperstein B.N., The fifty-six-dimensional module for E 7. A four form for E7, J. Algebra, 173 (1995), pp. 361-389. Zbl0838.20047MR1325780
  19. [C3] Cooperstein B N., Four forms I. Basic concepts and examples (to appear). 
  20. [CIK] Curtis C.W. - Iwahori N. - Kilmoyer R., Hecke algebras and characters of parabolic type of finite groups with (B, N)- pairs, Publ. Math. Inst. Hautes Et. Sci., no. 40 (1971), pp. 81-116. Zbl0254.20004MR347996
  21. [DMV] Di Martino L. - Vavilov N.A., (2, 3)-generation of E6(q) (to appear). 
  22. [FF] Faulkner J.R. - Ferrar J.C., Exceptional Lie algebras and related algebraic and geometric structures, Bull. London Math. Soc., 9 (1977), pp. 1-35. Zbl0349.17004MR444729
  23. [GS] Gilkey P. - Seitz G., Some representations of exceptional Lie algebras, Geom. dedic., 25, no. 1-3 (1988), pp. 407-416. Zbl0661.17005MR925845
  24. [G] Griess R.L., A Moufang loop, the exceptional Jordan algebra and a cubic form in 27 variables, J. Algebra, 13 (1990), pp. 281-293. Zbl0718.17028MR1055009
  25. [HOM] Hahn A. - O'Meara O.T., The classical groups and K-theory, Springer-Verlag, N. Y. et al., 1989. Zbl0683.20033MR1007302
  26. [Ha] Haris S.J., Some irreducible representations of exceptional algebraic groups, Amer. J. Math., 93, no. 1 (1971), pp. 75-106. Zbl0215.39603MR279103
  27. [Hr] Hartshorn R., Algebraic Geometry, Springer-Verlag, N. Y. et al., 1977. MR463157
  28. [Hé] Hée J.-Y., Groupes de Chevalley et groupes classiques, Publ. Math. Univ.Paris VII, 17 (1984), pp. 1-54. Zbl0583.17005MR772212
  29. [Hi1] Hiller H., Combinatorics and intersections of Schubert varieties, Comment. Math. Helv., 57 (1982), pp. 41-59. Zbl0501.14030MR672845
  30. [Hi1] Hiller H., Geometry of Coxeter groups, Pitman, Boston and London, 1982. Zbl0483.57002MR649068
  31. [Ho] Howe R., Perspectives on invariant theory: Schur duality, multiplicity-free actions and beyond, Israel Math. Conf. Proc. (to appear). Zbl0844.20027MR1321638
  32. [H] Humphreys J.E., Introduction to Lie algebras and representation theory, Springer, Berlin et al., 1980. Zbl0254.17004MR499562
  33. [J] Joseph A., Quantum groups and their primitive ideals, Springer-Verlag, N.Y. et al., 1995. Zbl0808.17004MR1315966
  34. [K1] Kashiwara M., Crystallizing the q-analogue of universal enveloping algebra, Comm. Math. Phys., 133 (1990), pp. 249-260. Zbl0724.17009MR1090425
  35. [K2] Kashiwara M., On crystal base of q-analogue of universal envoloping algebras, Duke Math. J., 63 (1991), pp. 456-516. Zbl0739.17005MR1115118
  36. [K3] Kashiwara M., On crystal bases, Canadian Math. Soc. Conf. Proc., 16 (1995), pp. 155-197. Zbl0851.17014MR1357199
  37. [KN] Kashiwara M. - Nakashima T., Crystal graphs for representations of the q-analogue of classical Lie algebras, J. Algebra, 165 (1994), pp. 295-345. Zbl0808.17005MR1273277
  38. [LS1] Lakshmibai V. - Seshadri C.S., Geometry of G/P. V, J. Algebra, 100 (1986), pp. 462-557. Zbl0618.14026MR840589
  39. [LS1] Lakshmibai V. - Seshadri C.S., Standard monomial theory, Hyderabad Conference on Algebraic Groups, Manoj Prakashan, Madras, 1991, pp. 279-323. Zbl0785.14028MR1131317
  40. [LW] Lakshmibai V. - Weyman J., Multiplicities of points on a Schubert variety in a minuscule G/P, Adv. Math., 84, no. 2 (1990), pp. 179-208. Zbl0729.14037MR1080976
  41. [Li] Lichtenstein W., A system of quadrics describing the orbit of the highest weight vector, Proc. Amer. Math. Soc., 84, no. 4 (1982), pp. 605-608. Zbl0501.22017MR643758
  42. [LS] Liebeck W.M. - Saxl J., On the orders of the maximal subgroups of the finite exceptional groupes of Lie type, Proc. London Math. Soc., 55 (1987), pp. 299-330. Zbl0627.20026MR896223
  43. [Li1] Littelmann P., A Littlewood-Richardson rule for symmetrizable Kac-Moody algebras, Invent. Math., 116 (1994), 229-246. Zbl0805.17019MR1253196
  44. [Li2] Littelmann P., Crystal graphs and Young tableau, J. Algebra, 175, no. 1 (1995), pp. 65-87. Zbl0831.17004MR1338967
  45. [Li3] Littelmann P., Path and root operators in representation theory, Ann. Math., 142 (1995), pp. 499-525. Zbl0858.17023MR1356780
  46. [L1] Lusztig G., Canonical bases arising from quantized enveloping algebras, J. Amer. Math. Soc., 3 (1990), pp. 447-498. Zbl0703.17008MR1035415
  47. [L2] Lusztig G., Canonical bases arising from quantized envoloping algebras. II, Progr. Theor. Physics, 102 (1990), pp. 175-202. Zbl0776.17012MR1182165
  48. [L2] Lusztig G., Introduction to quantum groups, Birkhäuser, Boston et al., 1993. Zbl0788.17010MR1227098
  49. [Mn] Manin Yu. I., Cubic forms: algebra, geometry, arithmetic, North-Holland, Amsterdam-London, 1974. Zbl0582.14010MR833513
  50. [Mr] Mars J.G.M., Les nombers de Tamagawa de certains groupes exceptionnels, Bull. Soc. Math. France, 94 (1966), pp. 97-140. Zbl0146.04601MR213363
  51. [Ma] Marsh R.J., On the adjoint module of a quantum group, Preprint University Warwick, no. 79 (1994), pp. 1-12. 
  52. [M] Matsumoto H., Sur les sous-groupes arithmétiques des groupes semisimples deployés, Ann. Sci. Ecole Norm. Sup., 4ème sér., 2 (1969), pp. 1-62. Zbl0261.20025MR240214
  53. [MPS] Michel L. - Patera J. - Sharp R., The Demazure-Tits subgroup of a simple Lie group, J. Math. Phys., 29 no. 4 (1988), pp. 777-796. Zbl0661.22007MR940338
  54. [PR] Parker C. - Röhrle G., Minuscule Representations, Preprint Universität Bielefeld, no. 72 (1993). 
  55. [Pl1] Plotkin E.B., Stability theorems for K1-functors for Chevalley groups, Proc. Conf. Nonassociative algebras and related topics. Hiroshima- 1990, World Scientific, London et al., 1991, pp. 203-217. Zbl0801.20019MR1150261
  56. [Pl2] Plotkin E.B., Surjective stabilization for K1-functors for some exceptional Chevalley groups, J. Soviet Math., 64, no. 1 (1993), pp. 751-767. Zbl0802.19003MR1164860
  57. [Pl3] Plotkin E.B., On a problem of H. Bass for Chevalley groups of type E7, Y. Algebra, 210, no. 1 (1998), pp. 67-85. Zbl0918.20039
  58. [PSV] Plotkin E.B. - Semenov A.A. - Vavilov N.A., Visual basic representations: an atlas, Int. J. Algebra and Computations, 8, no. (1998), pp. 61-97. Zbl0957.17006MR1492062
  59. [P1] Proctor R.A., Bruhat lattices, plane partition generating functions, and minuscule representations, Europ. J. Combinatorics, 5 (1984), pp. 331-350. Zbl0562.05003MR782055
  60. [P2] Proctor R.A., A Dynkin diagram classification theorem arising from a combinatorial problem, Adv. Math., 62, no. 2 (1986), pp. 103-117. Zbl0639.06006MR865833
  61. [Sch] Scharlau R., Buildings, Handbook of Incidence Geometry, North Jolland, Amsterdam, 1995, pp. 477-645. Zbl0841.51005MR1360726
  62. [Se] Seshadri C.S., Geometry of G/P. I. Standard monomial theory for minuscule P, C. P. Ramanujan: a tribute, Tata Press, Bombay, 1978, pp. 207-239. Zbl0447.14010MR541023
  63. [S1] Springer T.A., On the geometric algebra of the projective octave plane, Proc. Nederl. Akad. Wetensch., 65 (1962), pp. 451-468. Zbl0113.35903MR142045
  64. [S2] Springer T.A., Jordan algebras and algebraic groups, Springer-Verlag, N. Y. et al., 1973. Zbl0259.17003MR379618
  65. [S3] Springer T.A., Linear algebraic groups, Fundam. trends in Math., 55 (1989), pp. 5-136 (in Russian, English translation in Springer-Verlag). Zbl0789.20044MR1100484
  66. [St1] Stein M.R., Generators, relations and coverings of Chevalley groups over commutative rings, Amer. J. Math., 93, no. 4 (1971), pp. 965-1004. Zbl0246.20034MR322073
  67. [St2] Stein M.R., Stability theorems for K1, K 2 and related functors modeled on Chevalley groups, Japan J. Math., 4, no. 1 (1978), pp. 77-108. Zbl0403.18010MR528869
  68. [S] Steinberg R., Lectures on Chevalley groups, Yale University, 1968. MR466335
  69. [St] Stembridge J.R., On minuscule representations, plane partitions and involutions in complex Lie groups, Duke J. Math., 73, no. 2 (1994), pp. 469-490. Zbl0805.22006MR1262215
  70. [SV] Stepanov A.V. - Vavilov N.A., Decomposition of transvections: a theme with variations, K-theory, 19 (2000), pp. 109-153. Zbl0944.20031MR1740757
  71. [Te] Testerman D.M., A1-type overgroups of elements of order p in semisimple algebraic groups and associated finite groups, J. Algebra, 177, no. 1 (1995), pp. 34-76. Zbl0857.20025MR1356359
  72. [T] Tits J., Normalisateurs de tores. I. Groupes de Coxeter étendus, J. Algebra, 4, no. 1 (1966), pp. 96-116. Zbl0145.24703MR206117
  73. [V1] Vavilov N.A., On the problem of normality of the elementary subgroup in a Chevalley group, Algebraic and Discrete Systems, Ivanovo Univ., 1988, pp. 7-25 (in Russian). Zbl0816.20041MR1244582
  74. [V2] Vavilov N.A., Structure of Chevalley groups over commutative rings, Proc. Conf. Nonassociative algebras and related topics. Hiroshima- 1990, World Scientific, London et al., 1991, pp. 219-335. Zbl0799.20042MR1150262
  75. [V3] Vavilov N.A., Do it yourself structure constants for Lie algebras of type El, Preprint Universität Bielefeld, no. 35 (1993), pp. 1-42. Zbl1062.17004
  76. [V4] Vavilov N.A., Intermediate subgroups in Chevalley groups, Proc. Conf. Groups of Lie Type and their Geometries (Como - 1993), Cambridge Univ. Press, 1995, pp. 233-280. Zbl0879.20020MR1320525
  77. [V5] Vavilov N A., The ubiquity of microweights (to appear). 
  78. [V6] Vavilov N.A., Can one see the signs of the structure constants ?, St. Petersburg J. Math. (In Russian, to appear). 
  79. [V7] Vavilov N A., Geometry of the minimal modules for Chevalley groups of types E6 and E7 (to appear). 
  80. [VPe] Vavilov N.A. - Perelman E. Ya, Transvections in polyvector representations, St. Petersburg J. Math. (In Russian, to appear). 
  81. [VP] Vavilov N.A. - Plotkin E.B., Chevalley groups over commutative rings. I. Elementary calculations, Acta Applicandae Math., 45, no. 1 (1996), pp. 73-113. Zbl0861.20044MR1409655
  82. [VP] Vavilov N.A. - Plotkin E.B. - Stepanov A.V., Calculations in Chevalley groups over commutative rings, Soviet Math. Dokl., 40 no. 1 (1989), pp. 145-147. Zbl0795.20028MR1020667
  83. [W] Waterhouse W.C., Automorphisms of det(xij): a group scheme approach, Adv. Math., 65, no. 2 (1987), pp. 171-203. Zbl0651.14028MR900267

NotesEmbed ?


You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.


Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.