Regularity of the free boundary for non degenerate phase transition problems of parabolic type

L. Fornari

Rendiconti del Seminario Matematico della Università di Padova (2000)

  • Volume: 104, page 27-42
  • ISSN: 0041-8994

How to cite

top

Fornari, L.. "Regularity of the free boundary for non degenerate phase transition problems of parabolic type." Rendiconti del Seminario Matematico della Università di Padova 104 (2000): 27-42. <http://eudml.org/doc/108536>.

@article{Fornari2000,
author = {Fornari, L.},
journal = {Rendiconti del Seminario Matematico della Università di Padova},
keywords = {free boundaries; viscosity solution; phase transition; regualrity},
language = {eng},
pages = {27-42},
publisher = {Seminario Matematico of the University of Padua},
title = {Regularity of the free boundary for non degenerate phase transition problems of parabolic type},
url = {http://eudml.org/doc/108536},
volume = {104},
year = {2000},
}

TY - JOUR
AU - Fornari, L.
TI - Regularity of the free boundary for non degenerate phase transition problems of parabolic type
JO - Rendiconti del Seminario Matematico della Università di Padova
PY - 2000
PB - Seminario Matematico of the University of Padua
VL - 104
SP - 27
EP - 42
LA - eng
KW - free boundaries; viscosity solution; phase transition; regualrity
UR - http://eudml.org/doc/108536
ER -

References

top
  1. [1] 1 Athanasopoulos - L. A. CAFFARELLI - S. SALSA, Caloric functions in Lipschitz domains and the regularity of solutions to phase transition problems, Annals of Math., 143 (1996), pp. 413-434. Zbl0853.35049MR1394964
  2. [2] I. Athanasopoulos - L. A. CAFFARELLI - S. SALSA, Regularity of the free boundary in parabolic phase transition problems, Acta Math., 176 (1996), pp. 245-282. Zbl0891.35164MR1397563
  3. [3] L.A. Caffarelli, A Harnack inequality approach to the regularity of free [3] boundaries, Part I, Lipschitz free boundaries are C1, a, Rev. Math. Iberoamericana, 3 (1987), pp. 139-162. Zbl0676.35085MR990856
  4. [4] L.A. Caffarelli, A Harnack inequality approach to the regularity offree boundaries, Part II, Flat free boundaries are Lipschitz, Comm. Pure Appl. Math., 42 (1989), pp. 55-78. Zbl0676.35086MR973745
  5. [5] L.A. Caffarelli - L. C. EVANS, Continuity of the temperature in the two phase Stefan problems, Arch. Rat. Mech. Anal., 81 (3) (1983), pp. 199-220. Zbl0516.35080MR683353
  6. [6] L.A. Caffarelli - N. Wolanski, C1,α regularity of the free boundary for the N-dimensional porus media equation, Comm. Pure Appl. Math., 43 (1990), pp. 885-902. Zbl0728.76103
  7. [7] E.B. Fabes - N. Garofalo - S. Salsa, A backward Harnack inequality and Fatou Theorem for nonnegative solutions of parabolic equations, Ill. Journal of Math., 30 (4) (1986), pp. 536-565. Zbl0625.35006MR857210
  8. [8] E.B. Fabes - N. Garofalo - S. Salsa, Comparison Theorems for temperatures in non-cylindrical domains, Atti Accad. Naz. Lincei, Ser. 8 Rend., 78 (1984), pp. 1-12. Zbl0625.35007MR884371
  9. [9] L. Fornari, Regularity of the solution and of the free boundary for free boundary problems arising in combustion theory, Ann. di Matem. pura ed appl., (IV) 176 (1999), pp. 273-286. Zbl0952.35156MR1746545
  10. [10] A. Friedman, The Stefan problem in several space variables, Trans. Amer. Math. Soc., 133 (1968), pp. 51-87. Zbl0162.41903MR227625
  11. [11] C. Lederman - N. WOLANSKI, Viscosity solutions and regularity of the free boundary for the limit of an elliptic two phase singular perturbation problem, Ann. Scuola Norm. Sup. Pisa Cl. Sci. Journal of Math. (4), 27 (1998), pp. 253-288. Zbl0931.35200MR1664689
  12. [12] A.M. Meirmanov, On the classical solution of the multidimensional Stefan problem for quasilinear parabolic equations, Math. U.S.S.R.-Sbornik, 40 (1981), pp. 157-178. Zbl0467.35053
  13. [13] R.H. Nochetto, A class of non-degenerate two-phase Stefan problem in several space variables, Comm. P.D.E., 12 (1) (1987), pp. 21-45. Zbl0624.35085MR869101
  14. [14] L. Rubenstein, The Stefan problem: comments on its present state, J. Inst. Maths. Applics., 124 (1979), pp. 259-277. Zbl0434.35086MR550476
  15. [15] D.A. Tarzia, A bibliography on moving-free boundary problems for the heat equation. The Stefan problem, Prog. Naz. M.P.I. Ital., Firenze1988. Zbl0694.35221MR1007840
  16. [16] A. Visintin, Models of phase transitions, Birkhäuser, Boston1996. Zbl0882.35004MR1423808
  17. [17] K.O. Widman, Inequalities for the Green function and boundary continuity of the gradient of solutions of elliptic differential equations, Math. Scand., 21 (1967), pp. 17-37. Zbl0164.13101MR239264

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.