Regularity of the free boundary for non degenerate phase transition problems of parabolic type
Rendiconti del Seminario Matematico della Università di Padova (2000)
- Volume: 104, page 27-42
- ISSN: 0041-8994
Access Full Article
topHow to cite
topFornari, L.. "Regularity of the free boundary for non degenerate phase transition problems of parabolic type." Rendiconti del Seminario Matematico della Università di Padova 104 (2000): 27-42. <http://eudml.org/doc/108536>.
@article{Fornari2000,
author = {Fornari, L.},
journal = {Rendiconti del Seminario Matematico della Università di Padova},
keywords = {free boundaries; viscosity solution; phase transition; regualrity},
language = {eng},
pages = {27-42},
publisher = {Seminario Matematico of the University of Padua},
title = {Regularity of the free boundary for non degenerate phase transition problems of parabolic type},
url = {http://eudml.org/doc/108536},
volume = {104},
year = {2000},
}
TY - JOUR
AU - Fornari, L.
TI - Regularity of the free boundary for non degenerate phase transition problems of parabolic type
JO - Rendiconti del Seminario Matematico della Università di Padova
PY - 2000
PB - Seminario Matematico of the University of Padua
VL - 104
SP - 27
EP - 42
LA - eng
KW - free boundaries; viscosity solution; phase transition; regualrity
UR - http://eudml.org/doc/108536
ER -
References
top- [1] 1 Athanasopoulos - L. A. CAFFARELLI - S. SALSA, Caloric functions in Lipschitz domains and the regularity of solutions to phase transition problems, Annals of Math., 143 (1996), pp. 413-434. Zbl0853.35049MR1394964
- [2] I. Athanasopoulos - L. A. CAFFARELLI - S. SALSA, Regularity of the free boundary in parabolic phase transition problems, Acta Math., 176 (1996), pp. 245-282. Zbl0891.35164MR1397563
- [3] L.A. Caffarelli, A Harnack inequality approach to the regularity of free [3] boundaries, Part I, Lipschitz free boundaries are C1, a, Rev. Math. Iberoamericana, 3 (1987), pp. 139-162. Zbl0676.35085MR990856
- [4] L.A. Caffarelli, A Harnack inequality approach to the regularity offree boundaries, Part II, Flat free boundaries are Lipschitz, Comm. Pure Appl. Math., 42 (1989), pp. 55-78. Zbl0676.35086MR973745
- [5] L.A. Caffarelli - L. C. EVANS, Continuity of the temperature in the two phase Stefan problems, Arch. Rat. Mech. Anal., 81 (3) (1983), pp. 199-220. Zbl0516.35080MR683353
- [6] L.A. Caffarelli - N. Wolanski, C1,α regularity of the free boundary for the N-dimensional porus media equation, Comm. Pure Appl. Math., 43 (1990), pp. 885-902. Zbl0728.76103
- [7] E.B. Fabes - N. Garofalo - S. Salsa, A backward Harnack inequality and Fatou Theorem for nonnegative solutions of parabolic equations, Ill. Journal of Math., 30 (4) (1986), pp. 536-565. Zbl0625.35006MR857210
- [8] E.B. Fabes - N. Garofalo - S. Salsa, Comparison Theorems for temperatures in non-cylindrical domains, Atti Accad. Naz. Lincei, Ser. 8 Rend., 78 (1984), pp. 1-12. Zbl0625.35007MR884371
- [9] L. Fornari, Regularity of the solution and of the free boundary for free boundary problems arising in combustion theory, Ann. di Matem. pura ed appl., (IV) 176 (1999), pp. 273-286. Zbl0952.35156MR1746545
- [10] A. Friedman, The Stefan problem in several space variables, Trans. Amer. Math. Soc., 133 (1968), pp. 51-87. Zbl0162.41903MR227625
- [11] C. Lederman - N. WOLANSKI, Viscosity solutions and regularity of the free boundary for the limit of an elliptic two phase singular perturbation problem, Ann. Scuola Norm. Sup. Pisa Cl. Sci. Journal of Math. (4), 27 (1998), pp. 253-288. Zbl0931.35200MR1664689
- [12] A.M. Meirmanov, On the classical solution of the multidimensional Stefan problem for quasilinear parabolic equations, Math. U.S.S.R.-Sbornik, 40 (1981), pp. 157-178. Zbl0467.35053
- [13] R.H. Nochetto, A class of non-degenerate two-phase Stefan problem in several space variables, Comm. P.D.E., 12 (1) (1987), pp. 21-45. Zbl0624.35085MR869101
- [14] L. Rubenstein, The Stefan problem: comments on its present state, J. Inst. Maths. Applics., 124 (1979), pp. 259-277. Zbl0434.35086MR550476
- [15] D.A. Tarzia, A bibliography on moving-free boundary problems for the heat equation. The Stefan problem, Prog. Naz. M.P.I. Ital., Firenze1988. Zbl0694.35221MR1007840
- [16] A. Visintin, Models of phase transitions, Birkhäuser, Boston1996. Zbl0882.35004MR1423808
- [17] K.O. Widman, Inequalities for the Green function and boundary continuity of the gradient of solutions of elliptic differential equations, Math. Scand., 21 (1967), pp. 17-37. Zbl0164.13101MR239264
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.