Viscosity solutions and regularity of the free boundary for the limit of an elliptic two phase singular perturbation problem

Claudia Lederman; Noemi Wolanski

Annali della Scuola Normale Superiore di Pisa - Classe di Scienze (1998)

  • Volume: 27, Issue: 2, page 253-288
  • ISSN: 0391-173X

How to cite

top

Lederman, Claudia, and Wolanski, Noemi. "Viscosity solutions and regularity of the free boundary for the limit of an elliptic two phase singular perturbation problem." Annali della Scuola Normale Superiore di Pisa - Classe di Scienze 27.2 (1998): 253-288. <http://eudml.org/doc/84358>.

@article{Lederman1998,
author = {Lederman, Claudia, Wolanski, Noemi},
journal = {Annali della Scuola Normale Superiore di Pisa - Classe di Scienze},
keywords = {nonlinear singular perturbed problem; flame propagation; limit function; regularity of the free boundary},
language = {eng},
number = {2},
pages = {253-288},
publisher = {Scuola normale superiore},
title = {Viscosity solutions and regularity of the free boundary for the limit of an elliptic two phase singular perturbation problem},
url = {http://eudml.org/doc/84358},
volume = {27},
year = {1998},
}

TY - JOUR
AU - Lederman, Claudia
AU - Wolanski, Noemi
TI - Viscosity solutions and regularity of the free boundary for the limit of an elliptic two phase singular perturbation problem
JO - Annali della Scuola Normale Superiore di Pisa - Classe di Scienze
PY - 1998
PB - Scuola normale superiore
VL - 27
IS - 2
SP - 253
EP - 288
LA - eng
KW - nonlinear singular perturbed problem; flame propagation; limit function; regularity of the free boundary
UR - http://eudml.org/doc/84358
ER -

References

top
  1. [1] H.W. Alt - L.A. Caffarelli, Existence and regularity for a minimum problem with a free boundary, J. Reine Angew. Math.325 (1981), 105-144. Zbl0449.35105MR618549
  2. [2] H. Alt - L.A. Caffarelli - A. Friedman, Variational problems with two phases and their free boundaries, Trans. Amer. Math. Soc.282 (1984), 431-461. Zbl0844.35137MR732100
  3. [3] H. Berestycki - L.A. Caffarelli - L. Nirenberg, Uniform estimates for regularization offree boundary problems, In: "Analysis and Partial Differential Equations" (Cora Sadosky, ed.) Lecture Notes in Pure and Applied Mathematics vol. 122, Marcel Dekker, New York, 1988, pp. 567-619. Zbl0702.35252MR1044809
  4. [4] W. Beckner - C. Kenig - J. Pipher, A convexity property of eigenvalues with applications, to appear. MR1658628
  5. [5] J.D. Buckmaster - G.S.S. Ludford, "Theory of Laminar Flames", Cambridge University Press, Cambridge, 1982. Zbl0557.76001MR666866
  6. [6] L.A. Caffarelli, A Harnack inequality approach to the regularity of free boundaries. Part I: Lipschitz free boundaries are C1,α, Rev. Mat. Iberoamericana3 (1987), 139-162. Zbl0676.35085
  7. [7] L.A. Caffarelli, A Harnack inequality approach to the regularity of free boundaries. Part II: Flat free boundaries are Lipschitz, Comm. Pure Appl. Math.42 (1989), 55-78. Zbl0676.35086MR973745
  8. [8] L.A. Caffarelli, A Harnack inequality approach to the regularity of free boundaries. Part III: Existence theory, compactness and dependence on X, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 15 (1988), 583-602. Zbl0702.35249MR1029856
  9. [9] L.A. Caffarelli, A monotonicity formula for heat functions in disjoint domains, In: "Boundary Value Problems for P.D.E.'s and Applications", dedicated to E. Magenes (J. L. Lions, C. Baiocchi, eds.), Masson, Paris, 1993, pp. 53-60. Zbl0808.35042MR1260438
  10. [10] L.A. Caffarelli, Uniform Lipschitz regularity of a singular perturbation problem, Differential Integral Equations8 (1995), 1585-1590. Zbl0863.35008MR1347971
  11. [11] L.A. Caffarelli - C. Lederman - N. Wolanski, Uniform estimates and limits for a two phase parabolic singular perturbation problem, Indiana Univ. Math. J.46 (1997), 453-490. Zbl0909.35012MR1481599
  12. [12] L.A. Caffarelli - C. Lederman - N. Wolanski, Pointwise and viscosity solutions for the limit of a two phase parabolic singular perturbation problem, IndianaUniv. Math. J.46 (1997), 719-740. Zbl0909.35013MR1488334
  13. [13] L.A. Caffarelli - J.L. Vázquez, A free boundary problem for the heat equation arising in flame propagation, Trans. Amer. Math. Soc.347 (1995), 411-441. Zbl0814.35149MR1260199
  14. [14] H. Federer, "Geometric Measure Theory", Springer-Verlag, New York, 1969. Zbl0176.00801MR257325
  15. [15] L. Evans - R. Gariepy, "Measure Theory and Fine Properties of Functions", Studies in Advanced Mathematics, CRC Press, Boca Raton, 1992. Zbl0804.28001MR1158660
  16. [16] V.A. Galaktionov - J. Hulshof - J.L. Vázquez, Extinction and focusing behaviour of spherical and annular flames described by a free boundary problem, J. Math. Pures Appl.76 (1997), 563-608. Zbl0896.35143MR1472115
  17. [17] D. Kinderlehrer - L. Nirenberg, Regularity in free boundary problems, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 4 (1977), 373-391. Zbl0352.35023MR440187
  18. [18] J.L. Vázquez, The free boundary problem for the heat equation with fixed gradient condition, In: "Free Boundary Problems, Theory and Applications" (M. Niezgodka, P. Strzelecki, eds.), Pitman Research Series in Mathematics vol. 363, Longman, 1996, pp. 277-302. Zbl0867.35120MR1462990

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.