Viscosity solutions and regularity of the free boundary for the limit of an elliptic two phase singular perturbation problem
Claudia Lederman; Noemi Wolanski
Annali della Scuola Normale Superiore di Pisa - Classe di Scienze (1998)
- Volume: 27, Issue: 2, page 253-288
- ISSN: 0391-173X
Access Full Article
topHow to cite
topLederman, Claudia, and Wolanski, Noemi. "Viscosity solutions and regularity of the free boundary for the limit of an elliptic two phase singular perturbation problem." Annali della Scuola Normale Superiore di Pisa - Classe di Scienze 27.2 (1998): 253-288. <http://eudml.org/doc/84358>.
@article{Lederman1998,
author = {Lederman, Claudia, Wolanski, Noemi},
journal = {Annali della Scuola Normale Superiore di Pisa - Classe di Scienze},
keywords = {nonlinear singular perturbed problem; flame propagation; limit function; regularity of the free boundary},
language = {eng},
number = {2},
pages = {253-288},
publisher = {Scuola normale superiore},
title = {Viscosity solutions and regularity of the free boundary for the limit of an elliptic two phase singular perturbation problem},
url = {http://eudml.org/doc/84358},
volume = {27},
year = {1998},
}
TY - JOUR
AU - Lederman, Claudia
AU - Wolanski, Noemi
TI - Viscosity solutions and regularity of the free boundary for the limit of an elliptic two phase singular perturbation problem
JO - Annali della Scuola Normale Superiore di Pisa - Classe di Scienze
PY - 1998
PB - Scuola normale superiore
VL - 27
IS - 2
SP - 253
EP - 288
LA - eng
KW - nonlinear singular perturbed problem; flame propagation; limit function; regularity of the free boundary
UR - http://eudml.org/doc/84358
ER -
References
top- [1] H.W. Alt - L.A. Caffarelli, Existence and regularity for a minimum problem with a free boundary, J. Reine Angew. Math.325 (1981), 105-144. Zbl0449.35105MR618549
- [2] H. Alt - L.A. Caffarelli - A. Friedman, Variational problems with two phases and their free boundaries, Trans. Amer. Math. Soc.282 (1984), 431-461. Zbl0844.35137MR732100
- [3] H. Berestycki - L.A. Caffarelli - L. Nirenberg, Uniform estimates for regularization offree boundary problems, In: "Analysis and Partial Differential Equations" (Cora Sadosky, ed.) Lecture Notes in Pure and Applied Mathematics vol. 122, Marcel Dekker, New York, 1988, pp. 567-619. Zbl0702.35252MR1044809
- [4] W. Beckner - C. Kenig - J. Pipher, A convexity property of eigenvalues with applications, to appear. MR1658628
- [5] J.D. Buckmaster - G.S.S. Ludford, "Theory of Laminar Flames", Cambridge University Press, Cambridge, 1982. Zbl0557.76001MR666866
- [6] L.A. Caffarelli, A Harnack inequality approach to the regularity of free boundaries. Part I: Lipschitz free boundaries are C1,α, Rev. Mat. Iberoamericana3 (1987), 139-162. Zbl0676.35085
- [7] L.A. Caffarelli, A Harnack inequality approach to the regularity of free boundaries. Part II: Flat free boundaries are Lipschitz, Comm. Pure Appl. Math.42 (1989), 55-78. Zbl0676.35086MR973745
- [8] L.A. Caffarelli, A Harnack inequality approach to the regularity of free boundaries. Part III: Existence theory, compactness and dependence on X, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 15 (1988), 583-602. Zbl0702.35249MR1029856
- [9] L.A. Caffarelli, A monotonicity formula for heat functions in disjoint domains, In: "Boundary Value Problems for P.D.E.'s and Applications", dedicated to E. Magenes (J. L. Lions, C. Baiocchi, eds.), Masson, Paris, 1993, pp. 53-60. Zbl0808.35042MR1260438
- [10] L.A. Caffarelli, Uniform Lipschitz regularity of a singular perturbation problem, Differential Integral Equations8 (1995), 1585-1590. Zbl0863.35008MR1347971
- [11] L.A. Caffarelli - C. Lederman - N. Wolanski, Uniform estimates and limits for a two phase parabolic singular perturbation problem, Indiana Univ. Math. J.46 (1997), 453-490. Zbl0909.35012MR1481599
- [12] L.A. Caffarelli - C. Lederman - N. Wolanski, Pointwise and viscosity solutions for the limit of a two phase parabolic singular perturbation problem, IndianaUniv. Math. J.46 (1997), 719-740. Zbl0909.35013MR1488334
- [13] L.A. Caffarelli - J.L. Vázquez, A free boundary problem for the heat equation arising in flame propagation, Trans. Amer. Math. Soc.347 (1995), 411-441. Zbl0814.35149MR1260199
- [14] H. Federer, "Geometric Measure Theory", Springer-Verlag, New York, 1969. Zbl0176.00801MR257325
- [15] L. Evans - R. Gariepy, "Measure Theory and Fine Properties of Functions", Studies in Advanced Mathematics, CRC Press, Boca Raton, 1992. Zbl0804.28001MR1158660
- [16] V.A. Galaktionov - J. Hulshof - J.L. Vázquez, Extinction and focusing behaviour of spherical and annular flames described by a free boundary problem, J. Math. Pures Appl.76 (1997), 563-608. Zbl0896.35143MR1472115
- [17] D. Kinderlehrer - L. Nirenberg, Regularity in free boundary problems, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 4 (1977), 373-391. Zbl0352.35023MR440187
- [18] J.L. Vázquez, The free boundary problem for the heat equation with fixed gradient condition, In: "Free Boundary Problems, Theory and Applications" (M. Niezgodka, P. Strzelecki, eds.), Pitman Research Series in Mathematics vol. 363, Longman, 1996, pp. 277-302. Zbl0867.35120MR1462990
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.