Stability estimates for a linearized Muskat problem

C. Magni

Rendiconti del Seminario Matematico della Università di Padova (2000)

  • Volume: 104, page 43-57
  • ISSN: 0041-8994

How to cite

top

Magni, C.. "Stability estimates for a linearized Muskat problem." Rendiconti del Seminario Matematico della Università di Padova 104 (2000): 43-57. <http://eudml.org/doc/108537>.

@article{Magni2000,
author = {Magni, C.},
journal = {Rendiconti del Seminario Matematico della Università di Padova},
keywords = {free boundary; stability; fingers; Muskat problem},
language = {eng},
pages = {43-57},
publisher = {Seminario Matematico of the University of Padua},
title = {Stability estimates for a linearized Muskat problem},
url = {http://eudml.org/doc/108537},
volume = {104},
year = {2000},
}

TY - JOUR
AU - Magni, C.
TI - Stability estimates for a linearized Muskat problem
JO - Rendiconti del Seminario Matematico della Università di Padova
PY - 2000
PB - Seminario Matematico of the University of Padua
VL - 104
SP - 43
EP - 57
LA - eng
KW - free boundary; stability; fingers; Muskat problem
UR - http://eudml.org/doc/108537
ER -

References

top
  1. [1] F. Abergel, Well-posedness for a Cauchy problem associated to time dependent free boundaries with nonlocal leading terms, Commun. in Partial Differential Equations, 21, n. 9-10 (1996), pp. 1307-1319. Zbl0857.35139MR1410831
  2. [2] F. Abergel - J. Mossino, Characterization of the multidimensional Muskat problem and existence of smooth solutions, C. R. Acad. Sci. Paris, 319, serie I (1994), pp. 35-40. Zbl0807.76080MR1285894
  3. [3] J.S. Aronofsky, Trans. Aime, 195, 15 (1952). 
  4. [4] L. Boukrim - J. Mossino, Isoperimetric inequalities for a generalized multidimensional Muskat problem, C. R. Acad. Sci. Paris, 317, serie I (1993), pp. 392-332. Zbl0841.35131MR1235443
  5. [5] J.R. Cannon - A. Fasano, A nonlinear parabolic free boundary problem, Ann. Mat. Pura Appl., 4, n. 112 (1997), pp. 119-149. Zbl0348.35055MR460895
  6. [6] L.C. Evans, A free boundary problem: the flow of two immiscible fluids in a one-dimensional porous medium, I, Indiana University Mathematics Journal, 26, n. 5 (1997). Zbl0411.76066MR446055
  7. [7] W. Fulk - R. B. GUENTHER, A free boundary problem and an extension of Muskat's model, Acta Math., 122 (1969), pp. 273-300. Zbl0182.43102MR245253
  8. [8] L. Jiang - Z. Chien, Weak formulation of a multidimensional Muskat problem, in Proceedings of the Irsee Conference on Free Boundary Problems, Free Boundary Problems: Theory and Applications, II, K. H. Hoffmann and J. Sprekels ed., Pitman Res. Notes Math. Ser., n. 186 (1990). Zbl0723.35084
  9. [9] L. Jiang - J. Liang, The perturbarion of the interface of the two-dimensional diffraction problem and an approximating Muskat problem, J. Partial Differential Equations, 3, n. 2 (1990), pp. 85-96. Zbl0708.35095MR1057905
  10. [10] C. Magni, On the Muskat problem, Ph. D. Thesis, 1997. 
  11. [11] M. Muskat, Physics, 5, 250 (1943). 
  12. [12] M. Muskat, The flow of homogeneous fluids through porous media, Mc-Graw-Hill, New York (1973). JFM63.1368.03
  13. [13] A.E. Scheidegger, On the stability of displacement fronts in porous media: a discussion of the Muskat-Aronofsky model, Canad. J. Phys., 38 (1960), pp. 153-162. MR114453
  14. [14] A.E. Scheidegger, General theory of dispersion in porous media, J. Geophys. Res., 66 (1961), pp. 3273-3278. 
  15. [15] N.N. Verigin, Izv. Akad. Nauk. SSSR., 5 (1962), pp. 674-687. 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.