Page 1 Next

Displaying 1 – 20 of 357

Showing per page

3-dimensional physically consistent diffusion in anisotropic media with memory

Michele Caputo (1998)

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni

Some data on the flow of fluids exhibit properties which may not be interpreted with the classic theory of propagation of pressure and of fluids [21] based on the classic D’Arcy’s law which states that the flux is proportional to the pressure gradient. In order to obtain a better representation of the flow and of the pressure of fluids the law of D’Arcy is here modified introducing a memory formalisms operating on the flow as well as on the pressure gradient which implies a filtering of the pressure...

A boundary multivalued integral “equation” approach to the semipermeability problem

Jaroslav Haslinger, Charalambos C. Baniotopoulos, Panagiotis D. Panagiotopoulos (1993)

Applications of Mathematics

The present paper concerns the problem of the flow through a semipermeable membrane of infinite thickness. The semipermeability boundary conditions are first considered to be monotone; these relations are therefore derived by convex superpotentials being in general nondifferentiable and nonfinite, and lead via a suitable application of the saddlepoint technique to the formulation of a multivalued boundary integral equation. The latter is equivalent to a boundary minimization problem with a small...

A comparison of the String Gradient Weighted Moving Finite Element method and a Parabolic Moving Mesh Partial Differential Equation method for solutions of partial differential equations

Abigail Wacher (2013)

Open Mathematics

We compare numerical experiments from the String Gradient Weighted Moving Finite Element method and a Parabolic Moving Mesh Partial Differential Equation method, applied to three benchmark problems based on two different partial differential equations. Both methods are described in detail and we highlight some strengths and weaknesses of each method via the numerical comparisons. The two equations used in the benchmark problems are the viscous Burgers’ equation and the porous medium equation, both...

A degenerate parabolic system for three-phase flows in porous media

Vladimir Shelukhin (2007)

Annales mathématiques Blaise Pascal

A classical model for three-phase capillary immiscible flows in a porous medium is considered. Capillarity pressure functions are found, with a corresponding diffusion-capillarity tensor being triangular. The model is reduced to a degenerate quasilinear parabolic system. A global existence theorem is proved under some hypotheses on the model data.

A lower bound for the principal eigenvalue of the Stokes operator in a random domain

V. V. Yurinsky (2008)

Annales de l'I.H.P. Probabilités et statistiques

This article is dedicated to localization of the principal eigenvalue (PE) of the Stokes operator acting on solenoidal vector fields that vanish outside a large random domain modeling the pore space in a cubic block of porous material with disordered micro-structure. Its main result is an asymptotically deterministic lower bound for the PE of the sum of a low compressibility approximation to the Stokes operator and a small scaled random potential term, which is applied to produce a similar bound...

A mixed finite element method for Darcy flow in fractured porous media with non-matching grids

Carlo D’Angelo, Anna Scotti (2012)

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

We consider an incompressible flow problem in a N-dimensional fractured porous domain (Darcy’s problem). The fracture is represented by a (N − 1)-dimensional interface, exchanging fluid with the surrounding media. In this paper we consider the lowest-order (ℝ T0, ℙ0) Raviart-Thomas mixed finite element method for the approximation of the coupled Darcy’s flows in the porous media and within the fracture, with independent meshes for the respective domains. This is achieved thanks to an enrichment...

A mixed finite element method for Darcy flow in fractured porous media with non-matching grids∗

Carlo D’Angelo, Anna Scotti (2011)

ESAIM: Mathematical Modelling and Numerical Analysis

We consider an incompressible flow problem in a N-dimensional fractured porous domain (Darcy’s problem). The fracture is represented by a (N − 1)-dimensional interface, exchanging fluid with the surrounding media. In this paper we consider the lowest-order (ℝ T0, ℙ0) Raviart-Thomas mixed finite element method for the approximation of the coupled Darcy’s flows in the porous media and within the fracture, with independent meshes for the respective...

A multiscale mortar multipoint flux mixed finite element method

Mary Fanett Wheeler, Guangri Xue, Ivan Yotov (2012)

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

In this paper, we develop a multiscale mortar multipoint flux mixed finite element method for second order elliptic problems. The equations in the coarse elements (or subdomains) are discretized on a fine grid scale by a multipoint flux mixed finite element method that reduces to cell-centered finite differences on irregular grids. The subdomain grids do not have to match across the interfaces. Continuity of flux between coarse elements is imposed via a mortar finite element space on a coarse grid...

A multiscale mortar multipoint flux mixed finite element method

Mary Fanett Wheeler, Guangri Xue, Ivan Yotov (2012)

ESAIM: Mathematical Modelling and Numerical Analysis

In this paper, we develop a multiscale mortar multipoint flux mixed finite element method for second order elliptic problems. The equations in the coarse elements (or subdomains) are discretized on a fine grid scale by a multipoint flux mixed finite element method that reduces to cell-centered finite differences on irregular grids. The subdomain grids do not have to match across the interfaces. Continuity of flux between coarse elements is imposed via a mortar finite element space on a coarse grid...

A multiscale mortar multipoint flux mixed finite element method

Mary Fanett Wheeler, Guangri Xue, Ivan Yotov (2012)

ESAIM: Mathematical Modelling and Numerical Analysis

In this paper, we develop a multiscale mortar multipoint flux mixed finite element method for second order elliptic problems. The equations in the coarse elements (or subdomains) are discretized on a fine grid scale by a multipoint flux mixed finite element method that reduces to cell-centered finite differences on irregular grids. The subdomain grids do not have to match across the interfaces. Continuity of flux between coarse elements is imposed via a mortar finite element space on a coarse grid...

A note on poroacoustic traveling waves under Darcy's law: Exact solutions

P. M. Jordan, J. K. Fulford (2011)

Applications of Mathematics

A mathematical analysis of poroacoustic traveling wave phenomena is presented. Assuming that the fluid phase satisfies the perfect gas law and that the drag offered by the porous matrix is described by Darcy's law, exact traveling wave solutions (TWS)s, as well as asymptotic/approximate expressions, are derived and examined. In particular, stability issues are addressed, shock and acceleration waves are shown to arise, and special/limiting cases are noted. Lastly, connections to other fields are...

Currently displaying 1 – 20 of 357

Page 1 Next