On the automorphism group of a second order structure

Leonardo Biliotti

Rendiconti del Seminario Matematico della Università di Padova (2000)

  • Volume: 104, page 63-70
  • ISSN: 0041-8994

How to cite

top

Biliotti, Leonardo. "On the automorphism group of a second order structure." Rendiconti del Seminario Matematico della Università di Padova 104 (2000): 63-70. <http://eudml.org/doc/108539>.

@article{Biliotti2000,
author = {Biliotti, Leonardo},
journal = {Rendiconti del Seminario Matematico della Università di Padova},
keywords = {reductive homogeneous space; second order structure; -invariant connection; torsion free},
language = {eng},
pages = {63-70},
publisher = {Seminario Matematico of the University of Padua},
title = {On the automorphism group of a second order structure},
url = {http://eudml.org/doc/108539},
volume = {104},
year = {2000},
}

TY - JOUR
AU - Biliotti, Leonardo
TI - On the automorphism group of a second order structure
JO - Rendiconti del Seminario Matematico della Università di Padova
PY - 2000
PB - Seminario Matematico of the University of Padua
VL - 104
SP - 63
EP - 70
LA - eng
KW - reductive homogeneous space; second order structure; -invariant connection; torsion free
UR - http://eudml.org/doc/108539
ER -

References

top
  1. [1] S. Kobayashi - K. Nomizu, Foundations of Differential Geometry, Vol I, 1963, and Vol II, 1969, Wiley, New York. Zbl0119.37502MR1393940
  2. [2] S. Kobayashi, Trasformation groups in Differential geometry, Springer, Berkley (1970). Zbl0829.53023MR1336823
  3. [3] T. Ochiai, Geometry Associated with Semisimple Flat Homogeneous Spaces, American Mathematical Society, 152 (1970), pp. 159-193. Zbl0205.26004MR284936
  4. [4] F. Podestá, Projective Structures on Reductive Homogeneous Spaces, Proc. A.M.S., 109 (1990), pp. 1087-1096. Zbl0705.53023MR1013979
  5. [5] E. Cartan, Les Espaces a Connession conform, Gauthier-Villar, Paris, (1955). 
  6. [6] S. Helgason, Differential Geometry, Lie Groups, and Symmetric Spaces, Academic Press, IncLondon (1978). Zbl0451.53038MR514561
  7. [7] F. Warner, Foundations of Differential Manifold and Lie Groups, Springer, Berlin (1972). Zbl0516.58001MR722297
  8. [8] S. Kobayashi - T. Nagano, On Projective Connection, J. Math. Mech., 13 (1964), pp. 215-236. Zbl0117.39101MR159284

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.