p -adic completions and automorphisms of nilpotent groups

Rüdiger Göbel; Agnes T. Paras

Rendiconti del Seminario Matematico della Università di Padova (2001)

  • Volume: 105, page 193-206
  • ISSN: 0041-8994

How to cite

top

Göbel, Rüdiger, and Paras, Agnes T.. "$p$-adic completions and automorphisms of nilpotent groups." Rendiconti del Seminario Matematico della Università di Padova 105 (2001): 193-206. <http://eudml.org/doc/108548>.

@article{Göbel2001,
author = {Göbel, Rüdiger, Paras, Agnes T.},
journal = {Rendiconti del Seminario Matematico della Università di Padova},
keywords = {torsion-free nilpotent groups; prescribed groups of automorphisms; outer automorphism groups},
language = {eng},
pages = {193-206},
publisher = {Seminario Matematico of the University of Padua},
title = {$p$-adic completions and automorphisms of nilpotent groups},
url = {http://eudml.org/doc/108548},
volume = {105},
year = {2001},
}

TY - JOUR
AU - Göbel, Rüdiger
AU - Paras, Agnes T.
TI - $p$-adic completions and automorphisms of nilpotent groups
JO - Rendiconti del Seminario Matematico della Università di Padova
PY - 2001
PB - Seminario Matematico of the University of Padua
VL - 105
SP - 193
EP - 206
LA - eng
KW - torsion-free nilpotent groups; prescribed groups of automorphisms; outer automorphism groups
UR - http://eudml.org/doc/108548
ER -

References

top
  1. [1] A.L.S. Corner - R. Göbel, Prescribing endomorphism algebras - a unified treatment, Proc. London Math. Soc., 50 (1985), pp. 447-479. Zbl0562.20030MR779399
  2. [2] M. Dugas - R. GÖBEL, Torsion-free nilpotent groups and E-modules, Arch. Math., 54 (1990), pp. 340-351. Zbl0703.20033MR1042126
  3. [3] M. Dugas - R. GÖBEL, Automorphisms of torsion-free nilpotent groups of class 2, Trans. Amer. Math. Soc., 332 (1992), pp. 633-646. Zbl0773.20007MR1052906
  4. [4] R. Göbel - A.T. Paras, Outer automorphism groups of metabelian groups, J. of Pure and Applied Algebra, 149 (2000), pp. 251-266. Zbl0968.20020MR1762767
  5. [5] R. Göbel - A.T. Paras, Realizing automorphism groups of metabelian groups, Abelian Groups and Modules, Trends in Mathematics, Birkhäuser (1999), pp. 309-317. Zbl0956.20037MR1735578
  6. [6] M. Hall Jr., The Theory of Groups, Macmillan, 1973. Zbl0116.25403MR103215
  7. [7] R.B. Warfield JR., Nilpotent Groups, Lecture Notes in Math., vol. 513, Springer, 1976. Zbl0347.20018MR409661

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.