-adic completions and automorphisms of nilpotent groups
Rendiconti del Seminario Matematico della Università di Padova (2001)
- Volume: 105, page 193-206
- ISSN: 0041-8994
Access Full Article
topHow to cite
topGöbel, Rüdiger, and Paras, Agnes T.. "$p$-adic completions and automorphisms of nilpotent groups." Rendiconti del Seminario Matematico della Università di Padova 105 (2001): 193-206. <http://eudml.org/doc/108548>.
@article{Göbel2001,
author = {Göbel, Rüdiger, Paras, Agnes T.},
journal = {Rendiconti del Seminario Matematico della Università di Padova},
keywords = {torsion-free nilpotent groups; prescribed groups of automorphisms; outer automorphism groups},
language = {eng},
pages = {193-206},
publisher = {Seminario Matematico of the University of Padua},
title = {$p$-adic completions and automorphisms of nilpotent groups},
url = {http://eudml.org/doc/108548},
volume = {105},
year = {2001},
}
TY - JOUR
AU - Göbel, Rüdiger
AU - Paras, Agnes T.
TI - $p$-adic completions and automorphisms of nilpotent groups
JO - Rendiconti del Seminario Matematico della Università di Padova
PY - 2001
PB - Seminario Matematico of the University of Padua
VL - 105
SP - 193
EP - 206
LA - eng
KW - torsion-free nilpotent groups; prescribed groups of automorphisms; outer automorphism groups
UR - http://eudml.org/doc/108548
ER -
References
top- [1] A.L.S. Corner - R. Göbel, Prescribing endomorphism algebras - a unified treatment, Proc. London Math. Soc., 50 (1985), pp. 447-479. Zbl0562.20030MR779399
- [2] M. Dugas - R. GÖBEL, Torsion-free nilpotent groups and E-modules, Arch. Math., 54 (1990), pp. 340-351. Zbl0703.20033MR1042126
- [3] M. Dugas - R. GÖBEL, Automorphisms of torsion-free nilpotent groups of class 2, Trans. Amer. Math. Soc., 332 (1992), pp. 633-646. Zbl0773.20007MR1052906
- [4] R. Göbel - A.T. Paras, Outer automorphism groups of metabelian groups, J. of Pure and Applied Algebra, 149 (2000), pp. 251-266. Zbl0968.20020MR1762767
- [5] R. Göbel - A.T. Paras, Realizing automorphism groups of metabelian groups, Abelian Groups and Modules, Trends in Mathematics, Birkhäuser (1999), pp. 309-317. Zbl0956.20037MR1735578
- [6] M. Hall Jr., The Theory of Groups, Macmillan, 1973. Zbl0116.25403MR103215
- [7] R.B. Warfield JR., Nilpotent Groups, Lecture Notes in Math., vol. 513, Springer, 1976. Zbl0347.20018MR409661
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.