Longtime behavior of semilinear reaction-diffusion equations on the whole space

Vittorino Pata; Claudio Santina

Rendiconti del Seminario Matematico della Università di Padova (2001)

  • Volume: 105, page 233-251
  • ISSN: 0041-8994

How to cite

top

Pata, Vittorino, and Santina, Claudio. "Longtime behavior of semilinear reaction-diffusion equations on the whole space." Rendiconti del Seminario Matematico della Università di Padova 105 (2001): 233-251. <http://eudml.org/doc/108552>.

@article{Pata2001,
author = {Pata, Vittorino, Santina, Claudio},
journal = {Rendiconti del Seminario Matematico della Università di Padova},
language = {eng},
pages = {233-251},
publisher = {Seminario Matematico of the University of Padua},
title = {Longtime behavior of semilinear reaction-diffusion equations on the whole space},
url = {http://eudml.org/doc/108552},
volume = {105},
year = {2001},
}

TY - JOUR
AU - Pata, Vittorino
AU - Santina, Claudio
TI - Longtime behavior of semilinear reaction-diffusion equations on the whole space
JO - Rendiconti del Seminario Matematico della Università di Padova
PY - 2001
PB - Seminario Matematico of the University of Padua
VL - 105
SP - 233
EP - 251
LA - eng
UR - http://eudml.org/doc/108552
ER -

References

top
  1. [1] A.V. Babin - M. I. VISHIK, Attractors of partial differential evolution equations in an unbounded domain, Proc. Roy. Soc. Edinburgh, 116A (1990), pp. 221-243. Zbl0721.35029MR1084733
  2. [2] A.V. Babin - M. I. VISHIK, Attractors of evolution equations, North-Holland, Amsterdam (1992). Zbl0778.58002MR1156492
  3. [3] H. Brézis, Opérateurs maximaux monotones et semi-groupes de contractions dans les espaces de Hilbert, North-Holland Math. Stud.5, North-Holland, Amsterdam (1973). Zbl0252.47055MR348562
  4. [4] L.C. Evans, Partial differential equations, American Mathematical Society, Providence (1998). Zbl0902.35002MR1625845
  5. [5] E. Feireisl, Attractors for semilinear wave equations on R3, Nonlinear Analysis, 23 (1994), pp. 187-195. Zbl0819.35096MR1289126
  6. [6] E. Feireisl - PH. Laurençot - F. Simondon - H. Touré, Compact attractors for reaction-diffusion equations in Rn, C. R. Acad. Sci. Paris Sér. I Math., 319 (1994), pp. 147-151. Zbl0806.35075MR1288394
  7. [7] J.K. Hale, Asymptotic behavior of dissipative systems, American Mathematical Society, Providence (1988). Zbl0642.58013MR941371
  8. [8] A. Haraux, Systèmes dynamiques dissipatifs et applications, Coll. RMA 17, Masson, Paris (1990). Zbl0726.58001MR1084372
  9. [9] A. Haraux - F. B. WEISSLER, Non-uniqueness for a semilinear initial value problem, Indiana Univ. Math. J., 31 (1982), pp. 167-189. Zbl0465.35049MR648169
  10. [10] J.L. Lions, Quelques méthodes de résolutions des problèmes aux limites non linéaires, DunodGauthier-Villars, Paris (1969). Zbl0189.40603MR259693
  11. [11] V. Pata, Attractors for a damped wave equation on R3 with linear memory, Math. Meth. Appl. Sci., 23 (2000), pp. 633-653. Zbl0959.35024MR1752214
  12. [12] V. Pata - G. PROUSE - M. I. VISHIK, Traveling waves of dissipative non-autonomous hyperbolic equations in a strip, Adv. Differential Equations, 3 (1998), pp. 249-270. Zbl0954.35033MR1750416
  13. [13] R. Temam, Infinite-dimensional dynamical systems in mechanics and physics, Springer-Verlag, New York (1988). Zbl0662.35001MR953967
  14. [14] F.B. Weissler, Local existence and nonexistence for semilinear parabolic equations in Lp, Indiana Univ. Math. J., 1(1980), pp. 79-2102. Zbl0443.35034MR554819

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.