On quasi-projective uniserial modules

Dmitri Alexeev

Rendiconti del Seminario Matematico della Università di Padova (2001)

  • Volume: 105, page 65-76
  • ISSN: 0041-8994

How to cite

top

Alexeev, Dmitri. "On quasi-projective uniserial modules." Rendiconti del Seminario Matematico della Università di Padova 105 (2001): 65-76. <http://eudml.org/doc/108555>.

@article{Alexeev2001,
author = {Alexeev, Dmitri},
journal = {Rendiconti del Seminario Matematico della Università di Padova},
keywords = {quasi-projective module; uniserial module; valuation domain; archimedean ideal},
language = {eng},
pages = {65-76},
publisher = {Seminario Matematico of the University of Padua},
title = {On quasi-projective uniserial modules},
url = {http://eudml.org/doc/108555},
volume = {105},
year = {2001},
}

TY - JOUR
AU - Alexeev, Dmitri
TI - On quasi-projective uniserial modules
JO - Rendiconti del Seminario Matematico della Università di Padova
PY - 2001
PB - Seminario Matematico of the University of Padua
VL - 105
SP - 65
EP - 76
LA - eng
KW - quasi-projective module; uniserial module; valuation domain; archimedean ideal
UR - http://eudml.org/doc/108555
ER -

References

top
  1. [1] D. Alexeev, Quasi-projectivity over domains, Australian Bull. Math., 60 (1999), 129-135. Zbl0957.13018MR1702810
  2. [2] S. Bazzoni - L. Fuchs - L. Salce, The hierarchy of uniseriaL moduLes over a valuation domain, Forum Math., 7 (1995), pp. 247-277. Zbl0828.13004MR1316949
  3. [3] A. Facchini - L. SALCE, Uniserial moduLes: sums and isomorphisms of subquotients, Comm. Alg., 18 (1990), pp. 499-517. Zbl0712.16008MR1047324
  4. [4] L. Fuchs, A generalization of almost maximality of valuation domains, Houston J. Math., 13, no. 1 (1987), pp. 27-35. Zbl0625.13004MR884230
  5. [5] L. Fuchs - K. RANGASWAMY, Quasi-projective abelian groups, Bull. Soc. Math. France, 98 (1970), pp. 5-8. Zbl0194.06603MR263918
  6. [6] L. Fuchs - L. SALCE, Modules over valuation domains, Marcel Dekker, 1985. Zbl0578.13004MR786121
  7. [7] K.R. Fuller - D. A. HILL, On quasi-projective modules via relative projectivity, Arch. Math., 21 (1970), pp. 369-373. Zbl0208.04501MR272815
  8. [8] P. Herrmann, Self-projective modules over valuation rings, Arch. Math., 43 (1984), pp. 332-339. Zbl0532.13003MR802308
  9. [9] K.M. Rangaswamy - N. VANAJA, Quasi projectives in abelian and module categories, Pacific J. Math., 43, no. 1 (1972), 221-238. Zbl0244.16014MR314936
  10. [10] S. Shelah, Non-standard uniseriaL moduLes over a uniseriaL domain exist, Lecture Notes in Mathematics, no. 1182, Springer, 1986. 
  11. [11] T. Shores - W. Lewis, Serial modules and endomorphism rings, Duke Math. J., 41 (1974), pp. 889-909. Zbl0294.13007MR352079

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.