Computation of 2-groups of positive classes of exceptional number fields
Jean-François Jaulent[1]; Sebastian Pauli[2]; Michael E. Pohst[3]; Florence Soriano–Gafiuk[4]
- [1] Université de Bordeaux Institut de Mathématiques (IMB) 351, Cours de la Libération 33405 Talence Cedex, France
- [2] University of North Carolina Department of Mathematics and Statistics Greensboro, NC 27402, USA
- [3] Technische Universität Berlin Institut für Mathematik MA 8-1 Straße des 17. Juni 136 10623 Berlin, Germany
- [4] Université Paul Verlaine de Metz LMAM Ile du Saulcy 57000 Metz, France
Journal de Théorie des Nombres de Bordeaux (2008)
- Volume: 20, Issue: 3, page 715-732
- ISSN: 1246-7405
Access Full Article
topAbstract
topHow to cite
topJaulent, Jean-François, et al. "Computation of 2-groups of positive classes of exceptional number fields." Journal de Théorie des Nombres de Bordeaux 20.3 (2008): 715-732. <http://eudml.org/doc/10857>.
@article{Jaulent2008,
abstract = {We present an algorithm for computing the 2-group $\{\mathcal\{C\} \ell \}_F^\{\,pos\}$ of the positive divisor classes in case the number field $F$ has exceptional dyadic places. As an application, we compute the 2-rank of the wild kernel $W\!K_2(F)$ in $K_2(F)$.},
affiliation = {Université de Bordeaux Institut de Mathématiques (IMB) 351, Cours de la Libération 33405 Talence Cedex, France; University of North Carolina Department of Mathematics and Statistics Greensboro, NC 27402, USA; Technische Universität Berlin Institut für Mathematik MA 8-1 Straße des 17. Juni 136 10623 Berlin, Germany; Université Paul Verlaine de Metz LMAM Ile du Saulcy 57000 Metz, France},
author = {Jaulent, Jean-François, Pauli, Sebastian, Pohst, Michael E., Soriano–Gafiuk, Florence},
journal = {Journal de Théorie des Nombres de Bordeaux},
keywords = {logarithmic classes; wild kernels},
language = {eng},
number = {3},
pages = {715-732},
publisher = {Université Bordeaux 1},
title = {Computation of 2-groups of positive classes of exceptional number fields},
url = {http://eudml.org/doc/10857},
volume = {20},
year = {2008},
}
TY - JOUR
AU - Jaulent, Jean-François
AU - Pauli, Sebastian
AU - Pohst, Michael E.
AU - Soriano–Gafiuk, Florence
TI - Computation of 2-groups of positive classes of exceptional number fields
JO - Journal de Théorie des Nombres de Bordeaux
PY - 2008
PB - Université Bordeaux 1
VL - 20
IS - 3
SP - 715
EP - 732
AB - We present an algorithm for computing the 2-group ${\mathcal{C} \ell }_F^{\,pos}$ of the positive divisor classes in case the number field $F$ has exceptional dyadic places. As an application, we compute the 2-rank of the wild kernel $W\!K_2(F)$ in $K_2(F)$.
LA - eng
KW - logarithmic classes; wild kernels
UR - http://eudml.org/doc/10857
ER -
References
top- K. Belabas and H. Gangl, Generators and Relations for . K-Theory 31 (2004), 135–231. Zbl1090.11074MR2067570
- J.J. Cannon et al., The computer algebra system Magma, The University of Sydney (2006), http://magma.maths.usyd.edu.au/magma/.
- F. Diaz y Diaz, J.-F. Jaulent, S. Pauli, M.E. Pohst and F. Soriano, A new algorithm for the computation of logarithmic class groups of number fields. Experimental Math. 14 (2005), 67–76. Zbl1148.11060
- F. Diaz y Diaz and F. Soriano, Approche algorithmique du groupe des classes logarithmiques. J. Number Theory 76 (1999), 1–15. Zbl0930.11079MR1688208
- S. Freundt, A. Karve, A. Krahmann, S. Pauli, KASH: Recent Developments, in Mathematical Software - ICMS 2006, Second International Congress on Mathematical Software, LNCS 4151, Springer, Berlin, 2006, http://www.math.tu-berlin.de/~kant. Zbl1229.11160MR2387167
- K. Hutchinson, The -Sylow Subgroup of the Wild Kernel of Exceptional Number Fields. J. Number Th. 87 (2001), 222–238. Zbl1012.11102MR1824144
- K. Hutchinson, On Tame and wild kernels of special number fields. J. Number Th. 107 (2004), 368–391. Zbl1082.11076MR2072396
- K. Hutchinson and D. Ryan, Hilbert symbols as maps of functors. Acta Arith. 114 (2004), 349–368. Zbl1067.19003MR2101823
- J.-F. Jaulent, Sur le noyau sauvage des corps de nombres. Acta Arithmetica 67 (1994), 335–348. Zbl0835.11042MR1301823
- J.-F. Jaulent, Classes logarithmiques des corps de nombres. J. Théor. Nombres Bordeaux 6 (1994), 301–325. Zbl0827.11064MR1360648
- J.-F. Jaulent, S. Pauli, M. Pohst and F. Soriano-Gafiuk, Computation of 2-groups of narrow logarithmic divisor classes of number fields, Preprint. Zbl1176.11068
- J.-F. Jaulent and F. Soriano-Gafiuk, Sur le noyau sauvage des corps de nombres et le groupe des classes logarithmiques. Math. Z. 238 (2001), 335–354. Zbl1009.11062MR1865420
- J.-F. Jaulent and F. Soriano-Gafiuk, 2-groupe des classes positives d’un corps de nombres et noyau sauvage de la K-théorie. J. Number Th. 108 (2004), 187–208; Zbl1075.11076MR2098635
- J.-F. Jaulent and F. Soriano-Gafiuk, Sur le sous-groupe des éléments de hauteur infinie du d’un corps de nombres. Acta Arith. 122 (2006), 235–244. Zbl1103.11034MR2239916
- S. Pauli and F. Soriano-Gafiuk, The discrete logarithm in logarithmic -class groups and its applications in K-Theory. In “Algorithmic Number Theory”, D. Buell (ed.), Proceedings of ANTS VI, Springer LNCS 3076 (2004), 367–378. Zbl1125.11354MR2138008
- F. Soriano, Classes logarithmiques au sens restreint. Manuscripta Math. 93 (1997), 409–420. Zbl0887.11044MR1465887
- F. Soriano-Gafiuk, Sur le noyau hilbertien d’un corps de nombres. C. R. Acad. Sci. Paris t. 330 , Série I (2000), 863–866. Zbl0965.11046MR1771948
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.