Computation of 2-groups of positive classes of exceptional number fields

Jean-François Jaulent[1]; Sebastian Pauli[2]; Michael E. Pohst[3]; Florence Soriano–Gafiuk[4]

  • [1] Université de Bordeaux Institut de Mathématiques (IMB) 351, Cours de la Libération 33405 Talence Cedex, France
  • [2] University of North Carolina Department of Mathematics and Statistics Greensboro, NC 27402, USA
  • [3] Technische Universität Berlin Institut für Mathematik MA 8-1 Straße des 17. Juni 136 10623 Berlin, Germany
  • [4] Université Paul Verlaine de Metz LMAM Ile du Saulcy 57000 Metz, France

Journal de Théorie des Nombres de Bordeaux (2008)

  • Volume: 20, Issue: 3, page 715-732
  • ISSN: 1246-7405

Abstract

top
We present an algorithm for computing the 2-group 𝒞 F p o s of the positive divisor classes in case the number field F has exceptional dyadic places. As an application, we compute the 2-rank of the wild kernel W K 2 ( F ) in K 2 ( F ) .

How to cite

top

Jaulent, Jean-François, et al. "Computation of 2-groups of positive classes of exceptional number fields." Journal de Théorie des Nombres de Bordeaux 20.3 (2008): 715-732. <http://eudml.org/doc/10857>.

@article{Jaulent2008,
abstract = {We present an algorithm for computing the 2-group $\{\mathcal\{C\} \ell \}_F^\{\,pos\}$ of the positive divisor classes in case the number field $F$ has exceptional dyadic places. As an application, we compute the 2-rank of the wild kernel $W\!K_2(F)$ in $K_2(F)$.},
affiliation = {Université de Bordeaux Institut de Mathématiques (IMB) 351, Cours de la Libération 33405 Talence Cedex, France; University of North Carolina Department of Mathematics and Statistics Greensboro, NC 27402, USA; Technische Universität Berlin Institut für Mathematik MA 8-1 Straße des 17. Juni 136 10623 Berlin, Germany; Université Paul Verlaine de Metz LMAM Ile du Saulcy 57000 Metz, France},
author = {Jaulent, Jean-François, Pauli, Sebastian, Pohst, Michael E., Soriano–Gafiuk, Florence},
journal = {Journal de Théorie des Nombres de Bordeaux},
keywords = {logarithmic classes; wild kernels},
language = {eng},
number = {3},
pages = {715-732},
publisher = {Université Bordeaux 1},
title = {Computation of 2-groups of positive classes of exceptional number fields},
url = {http://eudml.org/doc/10857},
volume = {20},
year = {2008},
}

TY - JOUR
AU - Jaulent, Jean-François
AU - Pauli, Sebastian
AU - Pohst, Michael E.
AU - Soriano–Gafiuk, Florence
TI - Computation of 2-groups of positive classes of exceptional number fields
JO - Journal de Théorie des Nombres de Bordeaux
PY - 2008
PB - Université Bordeaux 1
VL - 20
IS - 3
SP - 715
EP - 732
AB - We present an algorithm for computing the 2-group ${\mathcal{C} \ell }_F^{\,pos}$ of the positive divisor classes in case the number field $F$ has exceptional dyadic places. As an application, we compute the 2-rank of the wild kernel $W\!K_2(F)$ in $K_2(F)$.
LA - eng
KW - logarithmic classes; wild kernels
UR - http://eudml.org/doc/10857
ER -

References

top
  1. K. Belabas and H. Gangl, Generators and Relations for K 2 O F . K-Theory 31 (2004), 135–231. Zbl1090.11074MR2067570
  2. J.J. Cannon et al., The computer algebra system Magma, The University of Sydney (2006), http://magma.maths.usyd.edu.au/magma/. 
  3. F. Diaz y Diaz, J.-F. Jaulent, S. Pauli, M.E. Pohst and F. Soriano, A new algorithm for the computation of logarithmic class groups of number fields. Experimental Math. 14 (2005), 67–76. Zbl1148.11060
  4. F. Diaz y Diaz and F. Soriano, Approche algorithmique du groupe des classes logarithmiques. J. Number Theory 76 (1999), 1–15. Zbl0930.11079MR1688208
  5. S. Freundt, A. Karve, A. Krahmann, S. Pauli, KASH: Recent Developments, in Mathematical Software - ICMS 2006, Second International Congress on Mathematical Software, LNCS 4151, Springer, Berlin, 2006, http://www.math.tu-berlin.de/~kant. Zbl1229.11160MR2387167
  6. K. Hutchinson, The 2 -Sylow Subgroup of the Wild Kernel of Exceptional Number Fields. J. Number Th. 87 (2001), 222–238. Zbl1012.11102MR1824144
  7. K. Hutchinson, On Tame and wild kernels of special number fields. J. Number Th. 107 (2004), 368–391. Zbl1082.11076MR2072396
  8. K. Hutchinson and D. Ryan, Hilbert symbols as maps of functors. Acta Arith. 114 (2004), 349–368. Zbl1067.19003MR2101823
  9. J.-F. Jaulent, Sur le noyau sauvage des corps de nombres. Acta Arithmetica 67 (1994), 335–348. Zbl0835.11042MR1301823
  10. J.-F. Jaulent, Classes logarithmiques des corps de nombres. J. Théor. Nombres Bordeaux 6 (1994), 301–325. Zbl0827.11064MR1360648
  11. J.-F. Jaulent, S. Pauli, M. Pohst and F. Soriano-Gafiuk, Computation of 2-groups of narrow logarithmic divisor classes of number fields, Preprint. Zbl1176.11068
  12. J.-F. Jaulent and F. Soriano-Gafiuk, Sur le noyau sauvage des corps de nombres et le groupe des classes logarithmiques. Math. Z. 238 (2001), 335–354. Zbl1009.11062MR1865420
  13. J.-F. Jaulent and F. Soriano-Gafiuk, 2-groupe des classes positives d’un corps de nombres et noyau sauvage de la K-théorie. J. Number Th. 108 (2004), 187–208; Zbl1075.11076MR2098635
  14. J.-F. Jaulent and F. Soriano-Gafiuk, Sur le sous-groupe des éléments de hauteur infinie du K 2 d’un corps de nombres. Acta Arith. 122 (2006), 235–244. Zbl1103.11034MR2239916
  15. S. Pauli and F. Soriano-Gafiuk, The discrete logarithm in logarithmic -class groups and its applications in K-Theory. In “Algorithmic Number Theory”, D. Buell (ed.), Proceedings of ANTS VI, Springer LNCS 3076 (2004), 367–378. Zbl1125.11354MR2138008
  16. F. Soriano, Classes logarithmiques au sens restreint. Manuscripta Math. 93 (1997), 409–420. Zbl0887.11044MR1465887
  17. F. Soriano-Gafiuk, Sur le noyau hilbertien d’un corps de nombres. C. R. Acad. Sci. Paris t. 330 , Série I (2000), 863–866. Zbl0965.11046MR1771948

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.