Pointwise decay for solutions of the 2D Neumann exterior problem for the wave equation. II

Paolo Secchi

Rendiconti del Seminario Matematico della Università di Padova (2002)

  • Volume: 108, page 67-77
  • ISSN: 0041-8994

How to cite

top

Secchi, Paolo. "Pointwise decay for solutions of the 2D Neumann exterior problem for the wave equation. II." Rendiconti del Seminario Matematico della Università di Padova 108 (2002): 67-77. <http://eudml.org/doc/108594>.

@article{Secchi2002,
author = {Secchi, Paolo},
journal = {Rendiconti del Seminario Matematico della Università di Padova},
language = {eng},
pages = {67-77},
publisher = {Seminario Matematico of the University of Padua},
title = {Pointwise decay for solutions of the 2D Neumann exterior problem for the wave equation. II},
url = {http://eudml.org/doc/108594},
volume = {108},
year = {2002},
}

TY - JOUR
AU - Secchi, Paolo
TI - Pointwise decay for solutions of the 2D Neumann exterior problem for the wave equation. II
JO - Rendiconti del Seminario Matematico della Università di Padova
PY - 2002
PB - Seminario Matematico of the University of Padua
VL - 108
SP - 67
EP - 77
LA - eng
UR - http://eudml.org/doc/108594
ER -

References

top
  1. [1] R. KLEINMAN - B. VAINBERG, Full-low frequency asymptotic expansion for second-order elliptic equations in two dimensions, Math. Methods Appl. Sci., 17 (1994), pp. 989-1004. Zbl0812.35028MR1293680
  2. [2] C. S. MORAWETZ, Decay for solutions of the exterior problem for the wave equation, Comm. Pure Appl. Math., 28 (1975), pp. 229-264. Zbl0304.35064MR372432
  3. [3] C. S. MORAWETZ, Notes on time decay and scattering for some hyperbolic problems, Reg. Conf. Series Appl. Math., SIAM 1975. Zbl0303.35002MR492919
  4. [4] R. RACKE, Lectures on Nonlinear Evolution Equations: Initial Value Problems, Vieweg Verlag, 1992. Zbl0811.35002MR1158463
  5. [5] J. V. RALSTON, Solutions of the wave equation with localized energy, Comm. Pure Appl. Math., 22 (1969), pp. 807-824. Zbl0209.40402MR254433
  6. [6] P. SECCHI, Pointwise decay for solutions of the 2D Neumann exterior problem for the wave equation, preprint. Zbl1178.35231MR2044266
  7. [7] B. VAINBERG, On the short wave asymptotic behaviour of solutions of stationary problems and the asymptotic behaviour as tKQ of solutions of non-stationary problems, Russian Math. Surveys, 30 (1975), pp. 1-58. Zbl0318.35006MR415085

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.