Page 1 Next

Displaying 1 – 20 of 330

Showing per page

A new method to obtain decay rate estimates for dissipative systems with localized damping.

Patrick Martínez (1999)

Revista Matemática Complutense

We consider the wave equation damped with a locally distributed nonlinear dissipation. We improve several earlier results of E. Zuazua and of M. Nakao in two directions: first, using the piecewise multiplier method introduced by K. Liu, we weaken the usual geometrical conditions on the localization of the damping. Then thanks to some new nonlinear integral inequalities, we eliminate the usual assumption on the polynomial growth of the feedback in zero and we show that the energy of the system decays...

A new method to obtain decay rate estimates for dissipative systems

Patrick Martinez (2010)

ESAIM: Control, Optimisation and Calculus of Variations

We consider the wave equation damped with a boundary nonlinear velocity feedback p(u'). Under some geometrical conditions, we prove that the energy of the system decays to zero with an explicit decay rate estimate even if the function ρ has not a polynomial behavior in zero. This work extends some results of Nakao, Haraux, Zuazua and Komornik, who studied the case where the feedback has a polynomial behavior in zero and completes a result of Lasiecka and Tataru. The proof is based on the construction...

A thermodynamic approach to nonisothermal phase-field models

Irena Pawłow (2015)

Applicationes Mathematicae

The goal of this paper is to work out a thermodynamical setting for nonisothermal phase-field models with conserved and nonconserved order parameters in thermoelastic materials. Our approach consists in exploiting the second law of thermodynamics in the form of the entropy principle according to I. Müller and I. S. Liu, which leads to the evaluation of the entropy inequality with multipliers. As the main result we obtain a general scheme of phase-field models which involves an...

Currently displaying 1 – 20 of 330

Page 1 Next