### A boundary value problem for the wave equation.

Skip to main content (access key 's'),
Skip to navigation (access key 'n'),
Accessibility information (access key '0')

In this paper we obtain a general fixed point theorem for an affine mapping in Banach space. As an application of this theorem we study existence of periodic solutions to the equations of the linear elasticity theory.

This work considers a Bresse system with viscoelastic damping on the vertical displacement and heat conduction effect on the shear angle displacement. A general stability result with minimal condition on the relaxation function is obtained. The system under investigation, to the best of our knowledge, is new and has not been studied before in the literature. What is more interesting is the fact that our result holds without the imposition of the equal speed of wave propagation condition, and differentiation...

We consider the wave equation damped with a locally distributed nonlinear dissipation. We improve several earlier results of E. Zuazua and of M. Nakao in two directions: first, using the piecewise multiplier method introduced by K. Liu, we weaken the usual geometrical conditions on the localization of the damping. Then thanks to some new nonlinear integral inequalities, we eliminate the usual assumption on the polynomial growth of the feedback in zero and we show that the energy of the system decays...

We consider the wave equation damped with a boundary nonlinear velocity feedback p(u'). Under some geometrical conditions, we prove that the energy of the system decays to zero with an explicit decay rate estimate even if the function ρ has not a polynomial behavior in zero. This work extends some results of Nakao, Haraux, Zuazua and Komornik, who studied the case where the feedback has a polynomial behavior in zero and completes a result of Lasiecka and Tataru. The proof is based on the construction...