A global existence result in Sobolev spaces for MHD system in the half-plane

Emanuela Casella; Paola Trebeschi

Rendiconti del Seminario Matematico della Università di Padova (2002)

  • Volume: 108, page 79-91
  • ISSN: 0041-8994

How to cite

top

Casella, Emanuela, and Trebeschi, Paola. "A global existence result in Sobolev spaces for MHD system in the half-plane." Rendiconti del Seminario Matematico della Università di Padova 108 (2002): 79-91. <http://eudml.org/doc/108595>.

@article{Casella2002,
author = {Casella, Emanuela, Trebeschi, Paola},
journal = {Rendiconti del Seminario Matematico della Università di Padova},
keywords = {2D incompressible MHD system},
language = {eng},
pages = {79-91},
publisher = {Seminario Matematico of the University of Padua},
title = {A global existence result in Sobolev spaces for MHD system in the half-plane},
url = {http://eudml.org/doc/108595},
volume = {108},
year = {2002},
}

TY - JOUR
AU - Casella, Emanuela
AU - Trebeschi, Paola
TI - A global existence result in Sobolev spaces for MHD system in the half-plane
JO - Rendiconti del Seminario Matematico della Università di Padova
PY - 2002
PB - Seminario Matematico of the University of Padua
VL - 108
SP - 79
EP - 91
LA - eng
KW - 2D incompressible MHD system
UR - http://eudml.org/doc/108595
ER -

References

top
  1. [1] G. V. ALEXSEEV, Solvability of a homogeneous initial-boundary value problem for equations of magnetohydrodynamics of an ideal fluid, (Russian), Dinam. Sploshn. Sredy, 57 (1982), pp. 3-20. Zbl0513.76106MR752597
  2. [2] H. BEIRÃO DA VEIGA, Boundary-value problems for a class of first order partial differential equations in Sobolev spaces and applications to the Euler flow, Rend. Sem. Mat. Univ. Padova, 79 (1988), pp. 247-273. Zbl0709.35082MR964034
  3. [3] H. BEIRÃO DA VEIGA, Kato’s perturbation theory and well posedness for the Euler equations in bounded domains, Arch. Rat. Mech Anal., 104 (1988), pp. 367-382. Zbl0672.35044MR960958
  4. [4] H. BEIRÃO DA VEIGA, A well posedness theorem for non-homogeneous inviscid fluids via a perturbation theorem, (II) J. Diff. Eq., 78 (1989), pp. 308-319. Zbl0682.35012MR992149
  5. [5] E. CASELLA - P. SECCHI - P. TREBESCHI, Global classical solutions for MHD system, to appear on Journal of Math. Fluid Mech., Mathematic. Zbl1037.76068MR1966645
  6. [6] T. KATO, On Classical Solutions of Two-Dimensional Non-Stationary Euler Equation, Arch. Rat. Mech. Anal., 25 (1967), pp. 188-200. Zbl0166.45302MR211057
  7. [7] T. KATO - C. Y. LAI, Nonlinear evolution equations and the Euler flow, J. Funct. Analysis, 56 (1984), pp. 15-28. Zbl0545.76007MR735703
  8. [8] K. KIKUCHI, Exterior problem for the two-dimensional Euler equation, J. Fac. Sci. Univ. Tokyo, Sec IA 30 (1983), pp. 63-92. Zbl0517.76024MR700596
  9. [9] H. KOZONO, Weak and Classical Solutions of the Two-dimensional magnetohydrodynamic equations, Tohoku Math. J., 41 (1989), pp. 471-488. Zbl0683.76103MR1007099
  10. [10] L. LICHTENSTEIN, Grundlagen der Hydromechanik, Edition of 1928 Springer, Berlin, 1968. Zbl0157.56701MR228225JFM55.1124.01
  11. [11] P. G. SCHMDT, On a magnetohydrodynamic problem of Euler type, J. Diff. Eq., 74 (1988), pp. 318-335. Zbl0675.35080MR952901
  12. [12] P. SECCHI, On the Equations of Ideal Incompressible Magneto-Hydrodynamics, Rend. Sem. Mat. Univ. Padova, 90 (1993), pp. 103-119. Zbl0808.35110MR1257135
  13. [13] R. TEMAM, Navier-Stokes Equations, 2nd Ed., North-Holland, Amsterdam, 1979. Zbl0426.35003MR603444
  14. [14] R. TEMAM, On the Euler equations of incompressible perfect fluids, J. Funct. Anal., 20 (1975), pp. 32-43. Zbl0309.35061MR430568
  15. [15] W. WOLIBNER, Un théorèm sur l’existence du mouvement plan d’un fluide parfait, homogène, incompressible, pendant un temps infiniment longue, Math. Z., 37 (1933), pp. 698-726. Zbl0008.06901MR1545430

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.