A global existence result in Sobolev spaces for MHD system in the half-plane

Emanuela Casella; Paola Trebeschi

Rendiconti del Seminario Matematico della Università di Padova (2002)

  • Volume: 108, page 79-91
  • ISSN: 0041-8994

How to cite

top

Casella, Emanuela, and Trebeschi, Paola. "A global existence result in Sobolev spaces for MHD system in the half-plane." Rendiconti del Seminario Matematico della Università di Padova 108 (2002): 79-91. <http://eudml.org/doc/108595>.

@article{Casella2002,
author = {Casella, Emanuela, Trebeschi, Paola},
journal = {Rendiconti del Seminario Matematico della Università di Padova},
keywords = {2D incompressible MHD system},
language = {eng},
pages = {79-91},
publisher = {Seminario Matematico of the University of Padua},
title = {A global existence result in Sobolev spaces for MHD system in the half-plane},
url = {http://eudml.org/doc/108595},
volume = {108},
year = {2002},
}

TY - JOUR
AU - Casella, Emanuela
AU - Trebeschi, Paola
TI - A global existence result in Sobolev spaces for MHD system in the half-plane
JO - Rendiconti del Seminario Matematico della Università di Padova
PY - 2002
PB - Seminario Matematico of the University of Padua
VL - 108
SP - 79
EP - 91
LA - eng
KW - 2D incompressible MHD system
UR - http://eudml.org/doc/108595
ER -

References

top
  1. [1] G. V. ALEXSEEV, Solvability of a homogeneous initial-boundary value problem for equations of magnetohydrodynamics of an ideal fluid, (Russian), Dinam. Sploshn. Sredy, 57 (1982), pp. 3-20. Zbl0513.76106MR752597
  2. [2] H. BEIRÃO DA VEIGA, Boundary-value problems for a class of first order partial differential equations in Sobolev spaces and applications to the Euler flow, Rend. Sem. Mat. Univ. Padova, 79 (1988), pp. 247-273. Zbl0709.35082MR964034
  3. [3] H. BEIRÃO DA VEIGA, Kato’s perturbation theory and well posedness for the Euler equations in bounded domains, Arch. Rat. Mech Anal., 104 (1988), pp. 367-382. Zbl0672.35044MR960958
  4. [4] H. BEIRÃO DA VEIGA, A well posedness theorem for non-homogeneous inviscid fluids via a perturbation theorem, (II) J. Diff. Eq., 78 (1989), pp. 308-319. Zbl0682.35012MR992149
  5. [5] E. CASELLA - P. SECCHI - P. TREBESCHI, Global classical solutions for MHD system, to appear on Journal of Math. Fluid Mech., Mathematic. Zbl1037.76068MR1966645
  6. [6] T. KATO, On Classical Solutions of Two-Dimensional Non-Stationary Euler Equation, Arch. Rat. Mech. Anal., 25 (1967), pp. 188-200. Zbl0166.45302MR211057
  7. [7] T. KATO - C. Y. LAI, Nonlinear evolution equations and the Euler flow, J. Funct. Analysis, 56 (1984), pp. 15-28. Zbl0545.76007MR735703
  8. [8] K. KIKUCHI, Exterior problem for the two-dimensional Euler equation, J. Fac. Sci. Univ. Tokyo, Sec IA 30 (1983), pp. 63-92. Zbl0517.76024MR700596
  9. [9] H. KOZONO, Weak and Classical Solutions of the Two-dimensional magnetohydrodynamic equations, Tohoku Math. J., 41 (1989), pp. 471-488. Zbl0683.76103MR1007099
  10. [10] L. LICHTENSTEIN, Grundlagen der Hydromechanik, Edition of 1928 Springer, Berlin, 1968. Zbl0157.56701MR228225JFM55.1124.01
  11. [11] P. G. SCHMDT, On a magnetohydrodynamic problem of Euler type, J. Diff. Eq., 74 (1988), pp. 318-335. Zbl0675.35080MR952901
  12. [12] P. SECCHI, On the Equations of Ideal Incompressible Magneto-Hydrodynamics, Rend. Sem. Mat. Univ. Padova, 90 (1993), pp. 103-119. Zbl0808.35110MR1257135
  13. [13] R. TEMAM, Navier-Stokes Equations, 2nd Ed., North-Holland, Amsterdam, 1979. Zbl0426.35003MR603444
  14. [14] R. TEMAM, On the Euler equations of incompressible perfect fluids, J. Funct. Anal., 20 (1975), pp. 32-43. Zbl0309.35061MR430568
  15. [15] W. WOLIBNER, Un théorèm sur l’existence du mouvement plan d’un fluide parfait, homogène, incompressible, pendant un temps infiniment longue, Math. Z., 37 (1933), pp. 698-726. Zbl0008.06901MR1545430

NotesEmbed ?

top

You must be logged in to post comments.