The finite free extension of artinian K -algebras with the strong Lefschetz property

Tadahito Harima; Junzo Watanabe

Rendiconti del Seminario Matematico della Università di Padova (2003)

  • Volume: 110, page 119-146
  • ISSN: 0041-8994

How to cite

top

Harima, Tadahito, and Watanabe, Junzo. "The finite free extension of artinian $K$-algebras with the strong Lefschetz property." Rendiconti del Seminario Matematico della Università di Padova 110 (2003): 119-146. <http://eudml.org/doc/108610>.

@article{Harima2003,
author = {Harima, Tadahito, Watanabe, Junzo},
journal = {Rendiconti del Seminario Matematico della Università di Padova},
language = {eng},
pages = {119-146},
publisher = {Seminario Matematico of the University of Padua},
title = {The finite free extension of artinian $K$-algebras with the strong Lefschetz property},
url = {http://eudml.org/doc/108610},
volume = {110},
year = {2003},
}

TY - JOUR
AU - Harima, Tadahito
AU - Watanabe, Junzo
TI - The finite free extension of artinian $K$-algebras with the strong Lefschetz property
JO - Rendiconti del Seminario Matematico della Università di Padova
PY - 2003
PB - Seminario Matematico of the University of Padua
VL - 110
SP - 119
EP - 146
LA - eng
UR - http://eudml.org/doc/108610
ER -

References

top
  1. [1] D. EISENBUD, Commutative Algebra with a view toward Algebraic Geometry, Springer-Verlag, Graduate Texts in Mathematics, 150 (1995). Zbl0819.13001MR1322960
  2. [2] A. GALLIGO, A propos du théorème de préparation de Weierstrass, Fonction de Plusieurs Variebles Complexes, Seminar F. Norget, Springer Lect. Notes Math., 409 (1974), 543-579. Zbl0297.32003MR402102
  3. [3] T. HARIMA - J. MIGLIORE - U. NAGEL - J. WATANABE, The weak and strong Lefschetz property for Artinian K-algebras, To appear in J. Algebra. Zbl1018.13001MR1970804
  4. [4] J. E. HUMPHREYS, Reflection groups and Coxceter groups, Cambridge studies in advanced mathematics, 29 (1990). Zbl0725.20028MR1066460
  5. [5] A. IARROBINO - V. KANEV, Power Sums, Gorenstein algebras, and Determinantal Loci, Springer LNM, 1721 (1999). Zbl0942.14026MR1735271
  6. [6] R. STANLEY, Weyl groups, the hard Lefschetz theorem and the Sperner property, SIAM J. Algebraic Discrete Methods., 1 (1980), pp. 168-184. Zbl0502.05004MR578321
  7. [7] J. WATANABE, The Dilworth number of Artinian rings and finite posets with rank function, Adv. Stud. Pure Math., 11 (1987), pp. 303-312. Zbl0648.13010MR951211
  8. [8] J. WATANABE, m-Full ideals, Nagoya Math. J., 106 (1987), pp. 101-111. Zbl0623.13012MR894414
  9. [9] H. WEYL, Classical Groups, their invariants and representations, 2nd Edition, Princeton (1946). Zbl1024.20502MR1488158

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.