Zero-dimensional Gorenstein algebras with the action of the symmetric group
Hideaki Morita; Akihito Wachi; Junzo Watanabe
Rendiconti del Seminario Matematico della Università di Padova (2009)
- Volume: 121, page 45-71
- ISSN: 0041-8994
Access Full Article
topHow to cite
topMorita, Hideaki, Wachi, Akihito, and Watanabe, Junzo. "Zero-dimensional Gorenstein algebras with the action of the symmetric group." Rendiconti del Seminario Matematico della Università di Padova 121 (2009): 45-71. <http://eudml.org/doc/108763>.
@article{Morita2009,
author = {Morita, Hideaki, Wachi, Akihito, Watanabe, Junzo},
journal = {Rendiconti del Seminario Matematico della Università di Padova},
keywords = {Gorenstein algebras; Young tableau; symmetric group},
language = {eng},
pages = {45-71},
publisher = {Seminario Matematico of the University of Padua},
title = {Zero-dimensional Gorenstein algebras with the action of the symmetric group},
url = {http://eudml.org/doc/108763},
volume = {121},
year = {2009},
}
TY - JOUR
AU - Morita, Hideaki
AU - Wachi, Akihito
AU - Watanabe, Junzo
TI - Zero-dimensional Gorenstein algebras with the action of the symmetric group
JO - Rendiconti del Seminario Matematico della Università di Padova
PY - 2009
PB - Seminario Matematico of the University of Padua
VL - 121
SP - 45
EP - 71
LA - eng
KW - Gorenstein algebras; Young tableau; symmetric group
UR - http://eudml.org/doc/108763
ER -
References
top- [1] W. FULTON, Young Tableaux, London Mathematical Society Student Text 35, Cambridge University Press, 1997. Zbl0878.14034MR1464693
- [2] R. GOODMAN - N. R. WALLACH, Representations and Invariants of the Classical Groups, Cambridge University Press, 1998. Zbl0901.22001MR1606831
- [3] T. HARIMA - J. WATANABE, The finite free extension of an Artinian K-algebra with the strong Lefschetz property, Rend. Sem. Mat. Univ. Padova, 110 (2003), pp. 119-146. Zbl1150.13305MR2033004
- [4] J. E. HUMPHREYS, Introduction to Lie Algebras and Representation Theory, Springer-Verlag, 1972. Zbl0254.17004MR323842
- [5] V. G. KAC, Infinite-dimensional Lie algebras, third ed., Cambridge University Press, Cambridge, 1990. Zbl0716.17022MR1104219
- [6] I. G. MACDONALD, Symmetric functions and Hall Polynomials, 2nd ed., Oxford Science Publications, London, 1995. Zbl0824.05059MR1354144
- [7] T. MAENO, Lefschetz property, Schur-Weyl duality and a q-deformation of Specht polynomial, Comm. Algebra, 35 (2007), pp. 1307-1321. Zbl1125.20001MR2313669
- [8] T. TERASOMA - H. -F. YAMADA, Higher Specht polynomials for the symmetric group, Proc. Japan Acad., 69 (1993), pp. 41-44. Zbl0811.20011MR1210951
- [9] J. WATANABE, The Dilworth number of Artinian rings and finite posets with rank function, Adv. Stud. Pure Math., 11 (1987), pp. 303-312. Zbl0648.13010MR951211
- [10] J. WATANABE, m-full ideals, Nagoya Math. J., 106 (1987), pp. 101-111. Zbl0623.13012MR894414
- [11] H. WEYL, Classical groups, their invariants and representations, 2nd Edition, Princeton, 1946. Zbl1024.20502MR1488158
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.