Zero-dimensional Gorenstein algebras with the action of the symmetric group

Hideaki Morita; Akihito Wachi; Junzo Watanabe

Rendiconti del Seminario Matematico della Università di Padova (2009)

  • Volume: 121, page 45-71
  • ISSN: 0041-8994

How to cite

top

Morita, Hideaki, Wachi, Akihito, and Watanabe, Junzo. "Zero-dimensional Gorenstein algebras with the action of the symmetric group." Rendiconti del Seminario Matematico della Università di Padova 121 (2009): 45-71. <http://eudml.org/doc/108763>.

@article{Morita2009,
author = {Morita, Hideaki, Wachi, Akihito, Watanabe, Junzo},
journal = {Rendiconti del Seminario Matematico della Università di Padova},
keywords = {Gorenstein algebras; Young tableau; symmetric group},
language = {eng},
pages = {45-71},
publisher = {Seminario Matematico of the University of Padua},
title = {Zero-dimensional Gorenstein algebras with the action of the symmetric group},
url = {http://eudml.org/doc/108763},
volume = {121},
year = {2009},
}

TY - JOUR
AU - Morita, Hideaki
AU - Wachi, Akihito
AU - Watanabe, Junzo
TI - Zero-dimensional Gorenstein algebras with the action of the symmetric group
JO - Rendiconti del Seminario Matematico della Università di Padova
PY - 2009
PB - Seminario Matematico of the University of Padua
VL - 121
SP - 45
EP - 71
LA - eng
KW - Gorenstein algebras; Young tableau; symmetric group
UR - http://eudml.org/doc/108763
ER -

References

top
  1. [1] W. FULTON, Young Tableaux, London Mathematical Society Student Text 35, Cambridge University Press, 1997. Zbl0878.14034MR1464693
  2. [2] R. GOODMAN - N. R. WALLACH, Representations and Invariants of the Classical Groups, Cambridge University Press, 1998. Zbl0901.22001MR1606831
  3. [3] T. HARIMA - J. WATANABE, The finite free extension of an Artinian K-algebra with the strong Lefschetz property, Rend. Sem. Mat. Univ. Padova, 110 (2003), pp. 119-146. Zbl1150.13305MR2033004
  4. [4] J. E. HUMPHREYS, Introduction to Lie Algebras and Representation Theory, Springer-Verlag, 1972. Zbl0254.17004MR323842
  5. [5] V. G. KAC, Infinite-dimensional Lie algebras, third ed., Cambridge University Press, Cambridge, 1990. Zbl0716.17022MR1104219
  6. [6] I. G. MACDONALD, Symmetric functions and Hall Polynomials, 2nd ed., Oxford Science Publications, London, 1995. Zbl0824.05059MR1354144
  7. [7] T. MAENO, Lefschetz property, Schur-Weyl duality and a q-deformation of Specht polynomial, Comm. Algebra, 35 (2007), pp. 1307-1321. Zbl1125.20001MR2313669
  8. [8] T. TERASOMA - H. -F. YAMADA, Higher Specht polynomials for the symmetric group, Proc. Japan Acad., 69 (1993), pp. 41-44. Zbl0811.20011MR1210951
  9. [9] J. WATANABE, The Dilworth number of Artinian rings and finite posets with rank function, Adv. Stud. Pure Math., 11 (1987), pp. 303-312. Zbl0648.13010MR951211
  10. [10] J. WATANABE, m-full ideals, Nagoya Math. J., 106 (1987), pp. 101-111. Zbl0623.13012MR894414
  11. [11] H. WEYL, Classical groups, their invariants and representations, 2nd Edition, Princeton, 1946. Zbl1024.20502MR1488158

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.