Multiple solutions of a nonlinear elliptic equation involving Neumann conditions and a critical Sobolev exponent

J. Chabrowski; Jianfu Yang

Rendiconti del Seminario Matematico della Università di Padova (2003)

  • Volume: 110, page 1-24
  • ISSN: 0041-8994

How to cite

top

Chabrowski, J., and Yang, Jianfu. "Multiple solutions of a nonlinear elliptic equation involving Neumann conditions and a critical Sobolev exponent." Rendiconti del Seminario Matematico della Università di Padova 110 (2003): 1-24. <http://eudml.org/doc/108616>.

@article{Chabrowski2003,
author = {Chabrowski, J., Yang, Jianfu},
journal = {Rendiconti del Seminario Matematico della Università di Padova},
language = {eng},
pages = {1-24},
publisher = {Seminario Matematico of the University of Padua},
title = {Multiple solutions of a nonlinear elliptic equation involving Neumann conditions and a critical Sobolev exponent},
url = {http://eudml.org/doc/108616},
volume = {110},
year = {2003},
}

TY - JOUR
AU - Chabrowski, J.
AU - Yang, Jianfu
TI - Multiple solutions of a nonlinear elliptic equation involving Neumann conditions and a critical Sobolev exponent
JO - Rendiconti del Seminario Matematico della Università di Padova
PY - 2003
PB - Seminario Matematico of the University of Padua
VL - 110
SP - 1
EP - 24
LA - eng
UR - http://eudml.org/doc/108616
ER -

References

top
  1. [1] ADIMURTHI - G. MANCINI, The Neumann problem for elliptic equations with critical nonlinearity, A tribute in honor of G. Prodi, Scuola Norm. Sup. Pisa (1991), pp. 9-25. Zbl0836.35048MR1205370
  2. [2] ADIMURTHI - G. MANCINI, Effect of geometry and topology of the boundary in critical Neumann problem, J. Reine Angew. Math., 456 (1994), pp. 1-18. Zbl0804.35036MR1301449
  3. [3] ADIMURTHI - G. MANCINI - S. L. YADAVA, The role of the mean curvature in a semilinear Neumann problem involving critical exponent, Comm. in P.D.E., 20, No. 3 and 4 (1995), pp. 591-631. Zbl0847.35047MR1318082
  4. [4] ADIMURTHI - F. PACELLA - S. L. YADAVA, Interaction between the geometry of the boundary and positive solutions of a semilinear Neumann problem with critical nonlinearity, J. Funct. Anal., 113 (1993), pp. 318-350. Zbl0793.35033MR1218099
  5. [5] ADIMURTHI - F. PACELLA - S. L. YADAVA, Characterization of concentration points and LQ -estimates for solutions of a semilinear Neumann problem involving the critical Sobolev exponent, Diff. Int. Eq., 8 (1995), pp. 31-68. Zbl0814.35029
  6. [6] ADIMURTHI - S. L. YADAVA, Critical Sobolev exponent problem in RN (NF4) with Neumann boundary condition, Proc. Indian Acad. Sci., 100 (1990), pp. 275-284. Zbl0735.35063MR1081711
  7. [7] H. BRÉZIS - L. NIRENBERG, Positive solutions of nonlinear elliptic equations involving critical Sobolev exponents, Commun. Pure Appl. Math., 36 (1983), pp. 437-477. Zbl0541.35029MR709644
  8. [8] J. CHABROWSKI, On the nonlinear Neumann problem with indefinite weight and Sobolev critical nonlinearity, Bull. Pol. Acad. Sc., 50 (3) (2002), pp. 323-333. Zbl1195.35122MR1948080
  9. [9] J. CHABROWSKI, Mean curvature and least energy solutions for the critical Neumann problem with weight, B.U.M.I. B, 5 (8) (2002), pp. 715-733. Zbl1097.35046MR1934376
  10. [10] J. CHABROWSKI - M. WILLEM, Least energy solutions of a critical Neumann problem with weight, Calc. Var., 15 (2002), pp. 121-131. Zbl1221.35116MR1942126
  11. [11] J. F. ESCOBAR, Positive solutions for some nonlinear elliptic equations with critical Sobolev exponents, Commun. Pure Appl. Math., 40 (1987), pp. 623-657. Zbl0635.35033MR896771
  12. [12] G. DJAIRO DE FIGUEIREDO - JIANFU YANG, Critical superlinear AmbrosettiProdi problems, TMNA, 14 (1999), pp. 50-80. Zbl0958.35055
  13. [13] D. GILBARG - N. S. TRUDINGER, Elliptic partial differential equations of second order, Springer-Verlag, Berlin (1983) (second edition). Zbl0562.35001MR737190
  14. [14] P. L. LIONS, The concentration-compactness principle in the calculus of variations, The limit case, Revista Math. Iberoamericana, 1, No. 1 and No. 2 (1985), pp. 145-201 and pp. 45-120. Zbl0704.49005MR834360
  15. [15] W. M. NI - X. B. PAN - L. TAKAGI, Singular behavior of least energy solutions of a semilinear Neumann problem involving critical Sobolev exponent, Duke Math. J., 67 (1992), pp. 1-20. Zbl0785.35041MR1174600
  16. [16] W. M. NI - L. TAKAGI, On the shape of least-energy solutions to a semilinear Neumann problem, Comm. Pure Appl. Math., 44 (1991), pp. 819-851. Zbl0754.35042MR1115095
  17. [17] X. J. WANG, Neumann problems of semilinear elliptic equations involving critical Sobolev exponents, J. Diff. Eq., 93 (1991), 283-310. Zbl0766.35017MR1125221
  18. [18] Z. Q. WANG, Remarks on a nonlinear Neumann problem with critical exponent, Houston J. Math., 20, No. 4 (1994), pp. 671-694. Zbl0817.35030MR1305937
  19. [19] Z. Q. WANG, The effect of the domain geometry on number of positive solutions of Neumann problems with critical exponents, Diff. Int. Eq., 8, No. 6 (1995), pp. 1533-1554. Zbl0829.35041MR1329855
  20. [20] M. WILLEM, Min-max Theorems, Boston 1996, Birkhäuser. 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.