Multiple solutions of a nonlinear elliptic equation involving Neumann conditions and a critical Sobolev exponent
Rendiconti del Seminario Matematico della Università di Padova (2003)
- Volume: 110, page 1-24
- ISSN: 0041-8994
Access Full Article
topHow to cite
topChabrowski, J., and Yang, Jianfu. "Multiple solutions of a nonlinear elliptic equation involving Neumann conditions and a critical Sobolev exponent." Rendiconti del Seminario Matematico della Università di Padova 110 (2003): 1-24. <http://eudml.org/doc/108616>.
@article{Chabrowski2003,
author = {Chabrowski, J., Yang, Jianfu},
journal = {Rendiconti del Seminario Matematico della Università di Padova},
language = {eng},
pages = {1-24},
publisher = {Seminario Matematico of the University of Padua},
title = {Multiple solutions of a nonlinear elliptic equation involving Neumann conditions and a critical Sobolev exponent},
url = {http://eudml.org/doc/108616},
volume = {110},
year = {2003},
}
TY - JOUR
AU - Chabrowski, J.
AU - Yang, Jianfu
TI - Multiple solutions of a nonlinear elliptic equation involving Neumann conditions and a critical Sobolev exponent
JO - Rendiconti del Seminario Matematico della Università di Padova
PY - 2003
PB - Seminario Matematico of the University of Padua
VL - 110
SP - 1
EP - 24
LA - eng
UR - http://eudml.org/doc/108616
ER -
References
top- [1] ADIMURTHI - G. MANCINI, The Neumann problem for elliptic equations with critical nonlinearity, A tribute in honor of G. Prodi, Scuola Norm. Sup. Pisa (1991), pp. 9-25. Zbl0836.35048MR1205370
- [2] ADIMURTHI - G. MANCINI, Effect of geometry and topology of the boundary in critical Neumann problem, J. Reine Angew. Math., 456 (1994), pp. 1-18. Zbl0804.35036MR1301449
- [3] ADIMURTHI - G. MANCINI - S. L. YADAVA, The role of the mean curvature in a semilinear Neumann problem involving critical exponent, Comm. in P.D.E., 20, No. 3 and 4 (1995), pp. 591-631. Zbl0847.35047MR1318082
- [4] ADIMURTHI - F. PACELLA - S. L. YADAVA, Interaction between the geometry of the boundary and positive solutions of a semilinear Neumann problem with critical nonlinearity, J. Funct. Anal., 113 (1993), pp. 318-350. Zbl0793.35033MR1218099
- [5] ADIMURTHI - F. PACELLA - S. L. YADAVA, Characterization of concentration points and LQ -estimates for solutions of a semilinear Neumann problem involving the critical Sobolev exponent, Diff. Int. Eq., 8 (1995), pp. 31-68. Zbl0814.35029
- [6] ADIMURTHI - S. L. YADAVA, Critical Sobolev exponent problem in RN (NF4) with Neumann boundary condition, Proc. Indian Acad. Sci., 100 (1990), pp. 275-284. Zbl0735.35063MR1081711
- [7] H. BRÉZIS - L. NIRENBERG, Positive solutions of nonlinear elliptic equations involving critical Sobolev exponents, Commun. Pure Appl. Math., 36 (1983), pp. 437-477. Zbl0541.35029MR709644
- [8] J. CHABROWSKI, On the nonlinear Neumann problem with indefinite weight and Sobolev critical nonlinearity, Bull. Pol. Acad. Sc., 50 (3) (2002), pp. 323-333. Zbl1195.35122MR1948080
- [9] J. CHABROWSKI, Mean curvature and least energy solutions for the critical Neumann problem with weight, B.U.M.I. B, 5 (8) (2002), pp. 715-733. Zbl1097.35046MR1934376
- [10] J. CHABROWSKI - M. WILLEM, Least energy solutions of a critical Neumann problem with weight, Calc. Var., 15 (2002), pp. 121-131. Zbl1221.35116MR1942126
- [11] J. F. ESCOBAR, Positive solutions for some nonlinear elliptic equations with critical Sobolev exponents, Commun. Pure Appl. Math., 40 (1987), pp. 623-657. Zbl0635.35033MR896771
- [12] G. DJAIRO DE FIGUEIREDO - JIANFU YANG, Critical superlinear AmbrosettiProdi problems, TMNA, 14 (1999), pp. 50-80. Zbl0958.35055
- [13] D. GILBARG - N. S. TRUDINGER, Elliptic partial differential equations of second order, Springer-Verlag, Berlin (1983) (second edition). Zbl0562.35001MR737190
- [14] P. L. LIONS, The concentration-compactness principle in the calculus of variations, The limit case, Revista Math. Iberoamericana, 1, No. 1 and No. 2 (1985), pp. 145-201 and pp. 45-120. Zbl0704.49005MR834360
- [15] W. M. NI - X. B. PAN - L. TAKAGI, Singular behavior of least energy solutions of a semilinear Neumann problem involving critical Sobolev exponent, Duke Math. J., 67 (1992), pp. 1-20. Zbl0785.35041MR1174600
- [16] W. M. NI - L. TAKAGI, On the shape of least-energy solutions to a semilinear Neumann problem, Comm. Pure Appl. Math., 44 (1991), pp. 819-851. Zbl0754.35042MR1115095
- [17] X. J. WANG, Neumann problems of semilinear elliptic equations involving critical Sobolev exponents, J. Diff. Eq., 93 (1991), 283-310. Zbl0766.35017MR1125221
- [18] Z. Q. WANG, Remarks on a nonlinear Neumann problem with critical exponent, Houston J. Math., 20, No. 4 (1994), pp. 671-694. Zbl0817.35030MR1305937
- [19] Z. Q. WANG, The effect of the domain geometry on number of positive solutions of Neumann problems with critical exponents, Diff. Int. Eq., 8, No. 6 (1995), pp. 1533-1554. Zbl0829.35041MR1329855
- [20] M. WILLEM, Min-max Theorems, Boston 1996, Birkhäuser.
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.